首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   12篇
  国内免费   20篇
测绘学   3篇
大气科学   1篇
地球物理   30篇
地质学   15篇
海洋学   95篇
综合类   1篇
自然地理   5篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2016年   8篇
  2015年   4篇
  2014年   7篇
  2013年   6篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   13篇
  2008年   17篇
  2007年   10篇
  2006年   8篇
  2005年   11篇
  2004年   12篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
排序方式: 共有150条查询结果,搜索用时 140 毫秒
21.
基于船载ADCP观测对罗源湾湾口断面潮流及余流的分析   总被引:2,自引:1,他引:1  
基于对罗源湾可门水道的25 h连续走航ADCP观测,成功构建了沿走航断面共12个站位的连续海流时间序列,并对这些站位的潮流、余流以及潮通量等进行了分析。结果表明可门水道内的潮流为正规半日潮流,驻波性质明显,涨潮首先出现在水道中下层而退潮则首先发生在水道上层。水道内的潮流为往复流,水道南部M2分潮流流速较大,并且其倾角自北向南逐渐增加。此外,水道两端的浅水区域内浅水分潮M4振幅较显著。可门水道内余流呈现出两层结构,20 m以浅余流沿东北向流出海湾,并且出流的核心位置偏南,而20 m以深的余流沿西南向流入湾内,入流的流核位于偏北的近底层区域。对潮通量的积分计算表明通过可门水道进入罗源湾的潮通量约为4.81×108 m3。  相似文献   
22.
深海潜标ADCP 的实时数据传输   总被引:2,自引:2,他引:0  
深海潜标观测是深海观测获取长周期海洋科学数据的重要调查手段,由于深海海域环境非常复杂,潜标易丢失或终止正常工作,造成重大损失.本研究基于铱星卫星数据通信模块,开发与深水潜标上安装的RDt 75k ADCP相匹配的数据解析压缩软硬件,建立一套远程实时获取潜标ADCP数据的传输系统,实现对深海潜标ADCP的实时监测.  相似文献   
23.
A complete understanding of alluvial-bed dynamics is desirable for evaluating a variety of issues related to water resources.Sediment fluxes were investigated in a bifurcation of the large Parana River near Rosario, Argentina. The backscatter estimations from the Doppler profilers provided the suspended load of the sediment forming the riverbed. An echo-sounder was applied to track the dunes yielding the bed-load estimation.Aiming to show the usefulness of the recorded data, a 2-D numerical code was applied to the 10-km long and 2-km wide Rosario reach. The morphodynamic module was un-coupled from the hydrodynamics assessment, which enabled the long-term prediction of the river morphology accounting for the hydrological yearly variation with a quasi-steady approach.Numerical experiments were performed to test the sensitivity of the hydrodynamic model to the computational time-step and mesh size, to test the un-coupling scheme performance regarding the full-dynamic modelling, to test the accuracy of the sediment transport formulae based on the field evidence and, finally, to provide guidance to properly fix the model parameters.  相似文献   
24.
The longitudinal dispersion coefficient (D) is an important parameter needed to describe the transport of solutes in rivers and streams. The dispersion coefficient is generally estimated from tracer studies but the method can be expensive and time consuming, especially for large rivers. A number of empirical relations are available to estimate the dispersion coefficient; however, these relations are known to produce estimates within an order of magnitude of the tracer value. The focus of this paper is on using the shear-flow dispersion theory to directly estimate the dispersion coefficient from velocity measurements obtained using an Acoustic Doppler Current Profiler (ADCP). Using tracer and hydrodynamic data collected within the same river reaches, we examined conditions under which the ADCP and tracer methods produced similar results. Since dead zones / transient storage (TS) are known to influence the dispersion coefficient, we assessed the relative importance of dead zones in different stream reaches using two tracer-based approaches: (1) TS modeling which explicitly accounts for dead zones and (2) the advection–dispersion equation (ADE) which does not have separate terms for dead zones. Dispersion coefficients based on the ADE tend to be relatively high as they describe some of the effects of dead zones as well. Results based on the ADCP method were found to be in good agreement with the ADE estimates indicating that storage zones play an important role in the estimated dispersion coefficients, especially at high flows. For the river sites examined in this paper, the tracer estimates of dispersion were close to the median values of the ADCP estimates obtained from multiple datasets within a reach. The ADCP method appears to be an excellent alternative to the traditional tracer-based method if care is taken to avoid spurious data and multiple datasets are used to compute a distance-weighted average or other appropriate measure that represents reach-averaged conditions.  相似文献   
25.
Fourteen acoustic Doppler current profilers (ADCPs) were deployed on the shelf and slope for 1 year just west of the DeSoto Canyon in the Northeastern Gulf of Mexico by the Naval Research Laboratory (NRL) as part of its Slope to Shelf Energetics and Exchange Dynamics (SEED) project. The winter and spring observations are discussed here in regards to the low-frequency current variability and its relation to wind and eddy forcing. Empirical orthogonal function (EOF) analyses showed that two modes described most of the current variability. Wind-forced variability of the along-shelf flow was the main contributor in Mode 1 while eddies contributed much of the variability in Mode 2. Wind-stress controlled currents on the shelf and slope at time scales of about a week. On longer time scales, variations in the currents on both the outer shelf and slope appear to be related to seasonal variations in the time-cumulated wind stress curl. Winds were dominant in driving the along-shelf transports, particularly along the slope. However, the effective wind stress component was found to be aligned with the west Florida shelf direction rather than the local shelf direction. Eddy intrusions, which were more numerous in winter and spring than in summer and fall, and winds were found to contribute significantly to cross-shelf exchange processes.  相似文献   
26.
A discussion is presented about the mechanisms that govern the spatial and seasonal variability in sand-wave height and migration speed in the 4 km wide Marsdiep tidal inlet, the Netherlands. Since 1998, current velocities and water depths have been recorded with an ADCP that is mounted under the ferry ‘Schulpengat’. In this paper, the current measurements were used to explain the sand-wave observations presented in Buijsman and Ridderinkhof [this issue. Long-term evolution of sand waves in the Marsdiep inlet. I: high-resolution observations. Continental Shelf Research, doi:10.1016/j.csr.2007.10.011]. Across nearly the entire inlet, the sand waves migrate in the flood direction. In the flood-dominated southern part of the inlet, the ‘measured’ (i.e. based on sand-wave shape and migration speed) and predicted bedload transport agree in direction, magnitude, and trends, whereas in the ebb-dominated northern part the predicted bedload and suspended load transport is opposite to the sand-wave migration. In the southern part, 55% of the bedload transport is due to tidal asymmetries and 45% due to residual currents. In addition to the well-known tidal asymmetries, asymmetries that arise from the interaction of M2M2 and its overtides with S2S2 and its compound tides are also important. It is hypothesised that in the northern part of the inlet the advection of suspended sand and lag effects govern the sand-wave migration. The relative importance of suspended load transport also explains why the sand waves have smaller lee-slope angles, are smaller, more rounded, and more three-dimensional in the northern half of the inlet. The sand waves in this part of the inlet feature the largest seasonal variability in height and migration speed. This seasonal variability may be attributed to the tides or a seasonal fluctuation in fall velocity. In both cases sediment transport is enhanced in winter, increasing sand-wave migration and decreasing sand-wave height. The influence of storms and estuarine circulation on the sand-wave variability is negligible.  相似文献   
27.
Mesoscale eddies in the Kuroshio recirculation region south of Japan have been investigated by using surface current data measured by an Acoustic Doppler Current Profiler (ADCP) installed on a regular ferry shuttling between Tokyo and Chichijima, Bonin Islands, and sea surface height anomaly derived from the TOPEX/POSEIDON altimeter. Many cyclonic and anticyclonic eddies were observed in the region. Spatial and temporal scales of the eddies were determined by lag-correlation analyses in space and time. The eddies are circular in shape with a diameter of 500 km and a temporal scale of 80 days. Typical maximum surface velocity and sea surface height anomaly associated with the eddies are 15–20 cm s–1 and 15 cm, respectively. The frequency of occurrence, temporal and spatial scales, and intensity are all nearly the same for the cyclonic and anticyclonic eddies, which are considered to be successive wave-like disturbances rather than solitary eddies. Phase speed of westward propagation of the eddies is estimated as 6.8 cm s–1, which is faster than a theoretical estimate based on the baroclinic first-mode Rossby wave with or without a mean current. The spatial distribution of sea surface height variations suggests that these eddies may be generated in the Kuroshio Extension region and propagate westward in the Kuroshio recirculation region, though further studies are needed to clarify the generation processes.  相似文献   
28.
29.
长江河口段徐六泾水文站潮流量整编代表线法研究   总被引:4,自引:1,他引:3  
长江河口段河道宽阔,断面几何形状复杂,水流往复流动,水力条件变化复杂,潮流量测验及整编一直是难题。随着多普勒剖面流速仪(ADCP)在技术上日益完善以及无线通讯技术的快速发展,解决长江河口段徐六泾水文站潮流量测验及整编问题具备了切实可行的技术条件。经过近两年的努力,根据代表线法测流原理,采用浮标ADCP结合平台ADCP的测流系统,徐六泾水文站成功地实现了断面流量、流速的实时监测,潮流量整编成果达到了规范要求。  相似文献   
30.
为了了解潮流从西北太平洋经吕宋海峡进入南海内的变化及其垂向结构,本文利用在吕宋海峡附近沿东西方向布放的多套潜标同步获得的高分辨率ADCP长时间连续观测上层海流资料,使用调和分析方法将实测海流分解成3部分:不随时间变化的定常流、周期性潮流和剩余流,并将潮流分解为正压潮流和斜压潮流。通过对实测海流中各组分的分析,得到以下结论:该区域潮流类型在不同深度上有明显变化;M2潮自吕宋海峡传入南海后强度显著减弱75%左右,K1、O1分潮在上层强度减弱约三分之一。从垂向变化来看,在潮流强度上,各站点垂直方向上潮流强度均发生变化。从方向上看,各分潮潮流椭圆东西向特征明显,长轴变化较大,短轴(南北向特征)垂向变化不显著;潮流运动主要沿逆时针方向,垂直方向上潮流明显减弱或增强时会发生转向。斜压潮流主要集中在上表层,100m左右以下随深度逐渐减弱。东西方向斜压潮流能量比正压潮流强,而南北向的流比较稳定,且斜压潮流能量远小于正压潮流。定常流强度在各站点呈现相似的变化趋势,随深度变化减弱。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号