首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19469篇
  免费   4453篇
  国内免费   5422篇
测绘学   1092篇
大气科学   9982篇
地球物理   4603篇
地质学   7320篇
海洋学   2376篇
天文学   312篇
综合类   1101篇
自然地理   2558篇
  2024年   212篇
  2023年   727篇
  2022年   915篇
  2021年   1003篇
  2020年   791篇
  2019年   1007篇
  2018年   710篇
  2017年   731篇
  2016年   670篇
  2015年   828篇
  2014年   1254篇
  2013年   1004篇
  2012年   1121篇
  2011年   1171篇
  2010年   1156篇
  2009年   1130篇
  2008年   1146篇
  2007年   1111篇
  2006年   1084篇
  2005年   1077篇
  2004年   939篇
  2003年   1093篇
  2002年   1057篇
  2001年   1002篇
  2000年   830篇
  1999年   621篇
  1998年   719篇
  1997年   668篇
  1996年   626篇
  1995年   575篇
  1994年   509篇
  1993年   419篇
  1992年   397篇
  1991年   328篇
  1990年   262篇
  1989年   202篇
  1988年   46篇
  1987年   31篇
  1986年   33篇
  1985年   28篇
  1984年   14篇
  1983年   11篇
  1982年   10篇
  1981年   11篇
  1980年   11篇
  1979年   5篇
  1978年   7篇
  1974年   4篇
  1954年   15篇
  1941年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
801.
CCSM4模式对东北气温和降水的模拟及预估   总被引:1,自引:0,他引:1  
利用东北地区162个气象观测站逐月气温和降水资料对CCSM4模式的模拟性能进行了评价,并预估了2021—2050年东北地区的气候变化情景。结果表明:CCSM4模式长期历史气候模拟实验模拟的1961—2005年月平均气温、降水量值能较好地再现东北区域年平均气温、降水量的空间分布形态,但气温模拟值比观测偏低,91. 4%站点误差在1. 5℃以内;降水中心比观测略偏北,全区平均偏多35. 18 mm。2021—2050年东北区域年平均气温呈增温趋势,高纬度地区的增温幅度明显大于低纬度地区,与基准年相比,RCP2. 6、RCP4. 5和RCP8. 5情景下全区分别偏高6. 00℃、5. 86℃和6. 42℃。年降水量分布呈东南向西北递减的形态,降水大值中心出现在东南部吉林与辽宁交界处,RCP2. 6、RCP4. 5和RCP8. 5情景下全区分别偏多15. 2%、3. 1%和2. 0%。  相似文献   
802.
基于1960—2017年沈阳市5个气象观测站4—5月降水量资料,采用线性趋势法和累积距平分析了沈阳市春播期(4—5月)降水量演变特征,并分析首场透雨及最大连续无有效降水日数演变特征及对春播期降水量影响,对春播期降水量资源变化特征进行相关分析。结果表明:近58a沈阳春播期降水量整体呈现弱的增加趋势,平均每10a增加3.1mm,2004年开始降水量迅速增加,且波动性较大,降水量异常偏多或偏少年份较多,易诱发春旱春涝事件。春播期首场透雨出现日期平均每10a偏晚0.051d,首场透雨日期偏晚,将导致春播期前期雨水条件不足,引起土壤干旱,不利于春播开展。最大连续无有效降水日数呈波动性增加趋势,平均每10a增加0.56d,对4月降水量影响较大,虽然春播期降水资源总量增加,但存在降水资源时间分配不均的问题,且长时间无有效降水事件频发,将导致春播期干旱灾害事件发生风险加大,导致适播期延后。  相似文献   
803.
基于1982-2017年NCEP_CFSv2(NCEP Climate Forecast System version 2)模式预测资料对黑龙江省夏季降水进行降尺度预测。通过分析黑龙江省夏季降水与同期环流因子的关系、模式对关键区环流因子的预测,选取模式模拟与再分析资料相关较好、黑龙江降水实况与再分析资料关系较好的环流因子作为预测因子,结合最优子集回归法筛选因子,建立降尺度预测模型,最后采用交叉检验法进行预测效果检验和独立样本预测。结果表明:模式降尺度预测与实况的距平符号-致率为69%,6 a独立样本预测中有5 a预测正确,优于目前的业务预测效果。进-步研究发现,在模式能够准确预测环流因子的情况下,模式降尺度可以较好地预测黑龙江省夏季降水的趋势。此外,模式降尺度在拉尼娜年预测效果较好。  相似文献   
804.
利用1961—2016年山西盛夏(7—8月)平均降水和同期NOAA重构海温资料,分析了山西盛夏降水分别与赤道中东太平洋海温和西太平洋暖池海温相关性的变化。结果表明:山西盛夏降水和赤道中东太平洋海温之间呈现稳定的显著负相关;和西太平洋暖池海温呈现正相关,并在20世纪70年代末到80年代初之后相关性加强,通过了0.05显著性检验。进一步分析表明,这种西太平洋暖池海温对20世纪80年代以来山西盛夏降水指示意义加强的事实,主要体现在赤道中东太平洋海温偏冷的背景下。西太平洋暖池海温异常通过影响与山西盛夏降水密切相关的大气环流、季风槽位置和东亚夏季风,导致山西盛夏降水异常。盛夏赤道中东太平洋海温偏冷时,西太平洋暖池海温偏暖(冷),通过遥相关引起中高纬度大气欧亚—太平洋型遥相关(EUP)和负太平洋—日本(PJ)波列,通过影响季风槽位置偏西偏北(偏东偏南),引起西太平洋副热带高压偏北(南)和季风指数偏小(大),导致山西盛夏降水偏多(少)。  相似文献   
805.
利用1961年1月—2014年12月Hadley气候预测研究中心的全球海表温度(SST)资料,NECP/NCAR逐日风场、比湿等再分析资料,国家气象信息中心提供的中国753站逐日降水、160站逐月降水资料,对比分析了东部(EP)型和中部(CP)型两类El Niňo事件次年夏季长江-黄河流域降水(简记为EP型和CP型降水)低频特征,以及与之相关的低频水汽输送差异。结果表明,1)平均而言,EP型降水主要有10~20 d(最显著)以及20~30 d(次显著)低频周期;CP型降水主要有10~20 d的低频显著周期。与之相关的纬、经向水汽通量最显著低频周期也为10~20 d。2)影响EP、CP型低频降水共同的低频水汽环流系统主要有:菲律宾群岛附近的异常反气旋式水汽环流和渤海湾附近(日本东南侧)的异常气旋式(反气旋式)水汽环流。另外,影响EP(CP)型低频降水的还有来自巴尔喀什湖东北部异常气旋式水汽环流(孟加拉湾、苏门答腊岛以西的异常气旋式水汽环流对和贝加尔湖西、东两侧的异常气旋式、反气旋式环流)。3)EP型降水暖湿水汽主要源自南海,冷湿水汽主要源自西北太平洋,冷空气来自巴尔喀什湖东北部和贝加尔湖西北侧。CP型降水暖湿水汽少量来自阿拉伯海和印度洋,大量来自热带西太平洋,冷空气主要来自贝加尔湖西北侧。  相似文献   
806.
对基本气候态和降水日变化的分析是检验模式模拟性能、理解模式误差来源的重要手段。为了评估出对热带气候模拟效果较好的物理参数化方案组合,本文应用WRF带状区域模式,主要比较了四种积云对流参数化方案:NewTiedtke、Kain-Fritsch、newSAS、Tiedtke,和两种辐射参数化方案:RRTMG和CAM,对热带带状区域的气候模拟结果。研究表明:使用NewTiedtke积云对流参数化方案和RRTMG辐射方案的试验,表现出对气温、降水及降水日变化等综合性最好的模拟性能;NewTiedtke积云对流参数化方案能模拟出较好的降水空间分布和降水日变化位相分布特征;与RRTMG辐射方案相比,CAM辐射方案会使温度模拟偏低,特别是陆地上更明显,这种陆地上的冷偏差可能主要来源于Tmin的模拟偏冷。  相似文献   
807.
808.
利用1979—2016年欧洲中期天气预报中心(ECMWF) ERA-Interim (1°×1°)再分析资料中的经、纬向水汽通量和大气可降水量(precipitation water vapor,PWV)数据,采用相关性分析、趋势分析法、累积距平、IDW等方法,分析三江源地区PWV与水汽通量的时空分布特征、降水转化率(precipitati-on conversion efficiency,PCE)变化规律。结果表明:过去的38 a,经、纬向多年平均水汽通量分别为50. 2、196. 7 kg·m-1·s^(-1),纬向水汽通量气候倾向率比经向大。南边界为纬向主要水汽输入边界,东边界为经向主要水汽输出边界,纬向水汽输送大于经向输送。多年平均PWV为1998. 3 mm,近38 aPWV呈现微弱增加趋势,1979—1997年,PWV呈下降趋势,1998年后PWV呈增加趋势,同期降水也在增加,说明该时段三江源地区气候转湿。PWV与水汽通量的年际变化趋势和转折年相一致。三江源区多年平均PCE为24. 57%,1989年PCE最高,达32. 76%,各季节平均PCE空间分布与年平均PCE分布一致,均表现出南部、东南部高,西部、东北部低的变化特征,各季节PCE大小差异明显,春季多年平均PCE为15. 92%,夏季25. 67%,秋季21. 01%,冬季仅7. 03%。  相似文献   
809.
810.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号