首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1425篇
  免费   690篇
  国内免费   584篇
测绘学   403篇
大气科学   16篇
地球物理   256篇
地质学   1194篇
海洋学   679篇
天文学   4篇
综合类   93篇
自然地理   54篇
  2024年   48篇
  2023年   110篇
  2022年   141篇
  2021年   136篇
  2020年   179篇
  2019年   211篇
  2018年   169篇
  2017年   78篇
  2016年   85篇
  2015年   83篇
  2014年   96篇
  2013年   84篇
  2012年   122篇
  2011年   118篇
  2010年   87篇
  2009年   88篇
  2008年   105篇
  2007年   71篇
  2006年   89篇
  2005年   68篇
  2004年   52篇
  2003年   75篇
  2002年   42篇
  2001年   72篇
  2000年   42篇
  1999年   40篇
  1998年   35篇
  1997年   27篇
  1996年   27篇
  1995年   26篇
  1994年   19篇
  1993年   22篇
  1992年   15篇
  1991年   6篇
  1990年   10篇
  1989年   7篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1957年   1篇
排序方式: 共有2699条查询结果,搜索用时 31 毫秒
81.
为解决抗滑短桩加固滑坡体理论研究不满足工程应用需要的现状,本文采用基于快速拉格朗日算法的FLAC3D软件,对桩长变化的抗滑短桩加固碎石土滑坡全过程进行三维有限元模拟,通过分析滑体位移、应力、抗滑短桩位移和桩身弯矩的变化规律,研究抗滑短桩的受力变形特性及桩土相互作用机理。研究表明:经抗滑短桩加固后的滑坡,稳定性显著提高;随着桩长增加,桩后应力分布越均匀,抗滑短桩与桩周土体的整体性越好,滑体最大位移逐渐减小,有效抑制滑体位移;当桩长小于60 cm时,滑体出现"越顶"现象,在楔形体前缘顶部形成了贯通滑动面,且发生较小范围的失稳破坏;当桩体自由段与滑体厚度比值为0.52~0.59时,加固效果最理想。研究结果对抗滑短桩加固滑坡体的抗滑机理予以补充。  相似文献   
82.
连云港地区软土为碱性环境下沉积的非均质海积软土,软土抗剪强度具有固有各向异性。采用三轴不固结不排水剪切(UU)试验、无侧限抗压强度(UTC)试验、快剪试验和原位十字板剪切(FVT)试验4种方法,对连云港地区软土的不固结不排水抗剪强度特征进行了研究。结果表明:土体水平剪切面强度最低,竖直面抗剪强度最高;土体制样采用垂直方向的切取试样方式时,土体强度最高。根据三轴UU试验得出的黏聚强度和内摩擦角基于土体单元极限平衡理论恢复了土体剪切破坏时的应力状态,计算出土体实际抗剪强度。三轴UU试验得出的抗剪强度平均值约为13.13 kPa,试样破裂面与水平面的夹角在45.1°~45.7°区间最为集中。UTC试验测得的土体平均抗剪强度近似等于三轴UU试验测得的平均抗剪强度。FVT试验测得软土抗剪强度平均值为19.72 kPa,与三轴UU试验和UTC试验得出的抗剪强度平均值相比高了约6.60 kPa,这种现象与室内试验试样的机械扰动、土体应力状态改变和剪切面特征有关。  相似文献   
83.
某拟建高速公路高填土路基为软土地基,地面标高低,地下水位高,工程地质条件差,需要对高填土路堤的稳定性进行评估。本文分别对5m、8m高的粉煤灰和灰土路堤进行路基抗滑稳定性分析和沉降验算。  相似文献   
84.
MTA固井技术在油气田中的运用已经取得了显著效果,能够提高二界面的抗剪切强度以及抵抗地层水对二界面的冲蚀。通过室内实验,对MTA固井技术在煤层气井中的运用进行探索。实验结果表明,MTA技术在煤层气井的固井模拟实验中,也能够有效的提高二界面的抗剪切强度,实现二界面的整体固化胶结,抵抗地层水对煤层气二界面的冲蚀,这些特点对于提高煤层气井的产能具有重要意义。作为一种施工简捷、效果显著的固井技术,MTA固井方法在煤层气井中的应用前景是极为广阔的。  相似文献   
85.
碱渣与饱和卤水混合制成浆体回填到盐矿废弃盐腔可同时解决碱渣处理问题和地下废弃盐腔存在的地质隐患。回填碱渣强度是影响充填效果的重要因素。因此,为了提高回填碱渣强度,采用掺入粉煤灰制成复合碱渣对其强度特性进行改良。针对不同粉煤灰掺合比的碱渣开展了组成、力学和细观试验。研究结果表明:(1)掺入粉煤灰能明显改善碱渣的强度,使其黏聚力、内摩擦角都大幅提高,抗剪强度大幅增加;(2)粉煤灰掺合比越大,增强效果越明显,但强度并非随掺合比呈线性变化,对黏聚力而言,在0~20%内的掺合比下增加速度最快,而对内摩擦角则在20%~30%的掺合比区间增加最快,对抗剪强度而言,0~20%的掺合比内增加最明显;(3)粉煤灰掺入还可显著改善碱渣的压缩固结特性,使其固结系数大幅提高,从而提高碱渣固结速度,缩短充填工期,其中在0~10%的掺合比内对压缩固结特性改善最显著;(4)矿物组成分析表明,粉煤灰掺入改变了矿物组成,使得亲水性矿物含量急剧锐减,进而改变了其沉积特性。而细观分析则表明,粉煤灰掺入使碱渣从絮凝团细观结构变成了粉煤灰充当骨架的充填结构,且粒间支撑和拉联效应明显。从增强效果提高、压缩固结特性增强、控制成本和工期综合分析表明,最优掺合比为20%左右,建议工程中以不高于20%的掺合比作为实用掺合比即可取得较为理想的充填增强效果。该研究为揭示碱渣增强机制及废弃盐腔碱渣充填工艺优化提供了有益参考。  相似文献   
86.
考虑荷载与浸水条件的预崩解炭质泥岩变形与强度试验   总被引:1,自引:0,他引:1  
预崩解炭质泥岩作为路堤填料已在我国西南地区路堤工程中广泛应用,为研究荷载与浸水条件下预崩解炭质泥岩变形与强度特性,研发一套可综合考虑多因素影响的湿化变形试验装置,并设计正交试验方案开展预崩解炭质泥岩湿化变形与直剪试验。结果表明:在加载初期和首次浸水时,预崩解炭质泥岩将产生较大竖向变形,分别为压缩变形和湿化变形,竖向荷载、循环次数、浸水时间、压实度、含水率对预崩解炭质泥岩竖向变形影响程度依次降低;预崩解炭质泥岩湿化变形过程中抗剪强度的变化主要源于黏聚力的变化,各因素对黏聚力的影响程度由强至弱依次为循环次数、浸水时间、竖向荷载、压实度及含水率;抗剪强度随竖向变形的增加先急剧降低后逐渐趋于稳定,拟合得到抗剪强度与竖向变形的函数关系式,可为炭质泥岩变形计算及工程实践提供一定参考依据。  相似文献   
87.
结合工程实例,介绍了水泥土复合管桩抗拔的基本原理和特性。为了便于抗拔承载力及经济效益的对比,在同一场地,试桩方案设计水泥土复合管桩2种桩型共6根,以及钻孔灌注桩2种桩型共5根,对其分别进行单桩抗拔静力载荷试验,通过对试验结果和基桩施工造价的分析后认为,在提供相同抗拔承载力特征值时,水泥土复合管桩上拔位移量是钻孔灌注桩的1/3,而造价仅为钻孔灌注桩的80%;管桩的顶部连接采用张拉机械套筒连接是安全可靠的。采用水泥土复合管桩以达到降低工程投资、提高施工质量和保护环境的目的。  相似文献   
88.
含粘粒砂土抗液化性能的试验研究   总被引:20,自引:1,他引:20  
通过对含粘粒砂土所作的试验研究, 包括: 粘粒矿物成分不同、粘粒含量不同的重塑土样所作的室内动三轴试验; X光衍射试验, 试验结果对比分析后, 得出了含粘粒砂土抗液化性能的特性。并得出以下结论: (1)粘粒矿物成分不同, 也引起砂土动力稳定性的变化; (2 )动剪应力强度与粘粒含量并非呈单调增加关系, 而呈抛物线型, 并给出回归方程; (3)含粘粒的砂土, 其抗液化能力最低点总是在粘粒含量 8.5~ 9.5 %之间。  相似文献   
89.
本文介绍汕头一中世贤伊梨楼基坑围护结构的设计以及施工过程中实际 问题的处理。  相似文献   
90.
《岩土力学》2016,(Z2):578-588
提出基于贝叶斯理论的抗剪强度参数最优Copula函数识别方法,首先简要介绍了基于Copula函数的岩土体抗剪强度参数相关结构表征方法,给出常用的识别最优Copula函数的最小平方欧氏距离法和AIC(akaike information criterion)准则。其次,采用蒙特卡洛模拟方法验证了贝叶斯理论识别最优Copula函数的有效性,比较了3种方法的最优Copula函数识别能力,并分析了影响贝叶斯理论识别精度的主要因素。最后,收集了实际工程共23组抗剪强度参数试验数据,研究了贝叶斯理论在抗剪强度参数最优Copula函数识别中的应用。结果表明,贝叶斯理论能够有效地识别表征抗剪强度参数间相关结构的最优Copula函数,且能有效考虑先验信息对识别结果的影响;与传统的最小平方欧氏距离法和AIC准则相比,贝叶斯理论的识别能力和识别精度都更高;抗剪强度参数的样本数目、相关性大小、真实Copula函数类型以及先验信息都对贝叶斯理论的识别精度具有重要的影响。此外,常用的Gaussian Copula函数并不总是表征抗剪强度参数间相关结构的最优Copula函数。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号