首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5040篇
  免费   1240篇
  国内免费   1097篇
测绘学   578篇
大气科学   858篇
地球物理   802篇
地质学   3104篇
海洋学   888篇
天文学   29篇
综合类   429篇
自然地理   689篇
  2024年   101篇
  2023年   284篇
  2022年   317篇
  2021年   294篇
  2020年   260篇
  2019年   277篇
  2018年   223篇
  2017年   201篇
  2016年   191篇
  2015年   226篇
  2014年   306篇
  2013年   231篇
  2012年   262篇
  2011年   274篇
  2010年   286篇
  2009年   278篇
  2008年   299篇
  2007年   267篇
  2006年   231篇
  2005年   244篇
  2004年   205篇
  2003年   217篇
  2002年   176篇
  2001年   198篇
  2000年   173篇
  1999年   139篇
  1998年   125篇
  1997年   151篇
  1996年   140篇
  1995年   158篇
  1994年   114篇
  1993年   91篇
  1992年   90篇
  1991年   91篇
  1990年   95篇
  1989年   54篇
  1988年   21篇
  1987年   17篇
  1986年   7篇
  1985年   10篇
  1983年   4篇
  1982年   6篇
  1978年   4篇
  1974年   3篇
  1957年   3篇
  1955年   2篇
  1951年   2篇
  1946年   3篇
  1945年   2篇
  1941年   3篇
排序方式: 共有7377条查询结果,搜索用时 0 毫秒
81.

在山西阳泉泊里矿区,太原组K2灰岩是15号煤层上部主要的含水层,查明其富水分布特征对上下组煤层安全开采至关重要。为了准确得到K2灰岩的富水分布区域,首先,利用常规的波阻抗反演获取精确的K2灰岩空间展布特征。然后,结合皮尔逊相关系数法与交叉验证−逐步回归法优选出9种地震属性,构成网络的训练数据。此外,引入适合于时序数据处理且能够捕捉测井曲线前后相关性的长短期记忆神经网络(LSTM),构建智能化、多变量LSTM视电阻率预测模型,以精确地预测研究区视电阻率进而得到地层富水性分布特征。同时,分别利用常规多属性回归算法与多变量LSTM模型在井点位置建立电阻率测井曲线与地震属性井旁道之间的映射关系。最后,将井点处训练好的网络模型推广至无井区得到全区视电阻率体,根据视电阻率值的高低、矿区地质构造与陷落柱发育情况圈定灰岩富水区。实际数据的测试结果表明:与常规多属性回归算法相比,多变量LSTM模型预测误差小,与测井相关系数高,说明多变量LSTM模型可以更加精确地预测出工区视电阻率,在含煤地层的富水性预测中有较好的应用价值。\t\t\t\t

  相似文献   
82.

储层可压性的准确评价是储层压裂设计和压后产能评估的重要前提。目前,采用岩石力学参数进行页岩可压裂性评价取得了较好的现场应用效果。因此,如何准确获取岩石力学参数成为至关重要的问题。通过建立一种基于物理信息约束的神经网络模型,该模型采用物理和数据双驱动,仅使用少量数据就能够实现岩石力学参数的准确预测。为验证模型性能的优异性,采用人工神经网络、随机森林和XGBoost模型与之进行对比。结果表明,物理信息约束的神经网络在少量数据下预测岩石力学参数的平均准确率高于95%,性能远优于其他模型。采用物理信息约束的神经网络预测得到弹性模量、泊松比、抗拉强度和断裂韧性4种岩石力学参数,基于岩石力学参数对储层可压性的影响,建立了基于脆性指数和力学参数的可压性评价方法。最后,以渤海湾盆地沧东凹陷K2段不同储层可压性为例进行验证。结果表明:研究区整体可压性较好,其中,纹层状混合质页岩可压裂指数高于0.7,可压性良好;纹层状长英质页岩、厚层状灰云质页岩和薄层灰云质页岩可压裂指数均处在0.4~0.7,可压性中等。评价结果与实际施工现场各储层日采油量进行对比,证实了可压性智能评价方法的可靠性,该方法可以推广至页岩储层可压性评价工作中。

  相似文献   
83.
郎瑞卿  裴璐熹  孙立强  周龙  李恒 《岩土力学》2023,(10):2789-2797
流态固化淤泥可用于基坑肥槽、道路路基等浇筑工程,其流动性是保障施工质量的重要因素,但不同液限新拌固化淤泥流动性缺乏系统研究,开展相关研究具有重要实践意义。通过对6种不同液限(wL=27.2%~62.0%)淤泥与固化淤泥开展流动度与黏滞性试验,揭示了固化材料掺量、含水率、液限三因素对淤泥和新拌流态固化淤泥流体流变特性的影响规律,并建立了流动度和黏滞剪切力的计算方法。研究表明:固化材料的掺入使新拌固化淤泥流动性下降明显,但掺入量超过5%后,降低幅度减缓,超过10%后,流动度基本保持不变;初始含水率越大,新拌固化淤泥流动性越好;含水率在wL附近时,固化淤泥流动度变化较小,超出wL一定倍数后,其流动度才明显增大,且wL越小,该数值越大,当含水率超过一定限值后,流动度增速减缓,该限值与土体wL呈正相关关系。在此基础之上,提出了淤泥和新拌淤泥固化土流动程度与淤泥wL间的幂函数关系,建立了不同wL新拌固化淤泥剪切力双曲计算模型。成果可为新拌固化淤泥的设计和施工提供参考。  相似文献   
84.
煤矿巷道变化的围岩地质条件影响着全断面岩石掘进机(Tunnel Boring Machine,TBM)的推广应用,准确评估煤矿岩体可掘性和岩层TBM适应性对TBM高效施工至关重要。基于对岩体参数和岩体可掘性指标的评价,采用优劣解距离法(TOPSIS)建立了岩体可掘性分级模型,并结合不同地质条件的[BQ]值和TBM利用率的相关性分析,提出了岩层适应性分级模型。以日掘进速度为判断指标,进行岩体可掘性和岩层适应性评估,建立了一套基于TBM施工性能的围岩综合分级方法,采用河南平顶山首山一矿底板瓦斯抽采巷道TBM掘进过程中的工程数据,对TBM围岩综合分级方法进行了现场应用。结果表明:在岩体可掘性等级为Ⅰ级,地层TBM适应性等级为3级的条件下,TBM施工巷道平均月进尺可达到400 m;当TBM利用率不足20%时,极有可能会出现卡机、出渣困难等现场问题。围岩综合分级方法通过利用自动采集的TBM掘进数据和围岩性质的综合分析,能够动态评估TBM在不同围岩地质条件下的施工性能,并为TBM掘进控制参数设计提供了理论依据。  相似文献   
85.
利用重复性和再现性的估计值评估测量不确定度   总被引:1,自引:1,他引:1  
熊英  郭巨权 《岩矿测试》2012,31(2):350-354
利用标准分析方法重复性、再现性的估计值,对EDTA容量法测定铜铅锌矿石中铅含量的结果进行不确定度评定,检验了参与协作试验的7个实验室偏倚分量的显著性及方法的重复性,当协作试验实验室偏倚及方法精密度处于控制范围时,测量不确定度主要与方法的再现性有关。为按相关标准进行协同试验建立的标准测试方法,提供了一种经济有效的测量不确定度评定方法。  相似文献   
86.
靳职斌 《物探与化探》2016,(6):1082-1088
利用常量元素地球化学特征参与评价岩体的含矿性具有重要意义.通过计算山西境内210个中酸性岩体的铝饱和指数,发现含矿岩体与非矿岩体的铝饱和指数存在一个明显的分界值,即铝饱和指数大于1.7的岩体基本与矿有关,小于此值的岩体绝大多数尚未发现与矿有关.铝饱和指数可能是反映岩体中矿元素活化释放程度或能力的一项重要指标,是本次探讨的重点,对评价其他区域中酸性岩的含矿性有重要参考意义.  相似文献   
87.
试论火山岩储层的类型及其成因特征   总被引:17,自引:0,他引:17  
本文在总结前人研究的基础上,结合胜利及辽河油田最新资料,提出了一种火山岩油气藏储层分类方案,共分为火山熔岩型、火山碎屑岩型和潜火山岩型3种类型。其中火山碎屑岩型又可分为正常火山碎屑岩型和火山碎屑沉积岩型两种亚类型;潜火山岩型分为隐爆角砾岩型和蚀变岩型两种亚类型。文中结合实例对各种类型储层的成因机制、空间展布特点以及储集性的变化特征进行了阐述和讨论。  相似文献   
88.
黑河流域山前绿洲水量转化模拟研究   总被引:8,自引:5,他引:8  
利用数字高程数据、遥感解译成果、地下水和水文气象资料,建立了一个基于GIS网格的黑河中游山前绿洲地区分布式水文模型.模拟结果表明,黑河流域中游山前绿洲地带的降水几乎完全消耗于蒸散发,且大约70%的山区地表径流补给也消耗于蒸散发.蒸散发以中游森林为最多,草本植被蒸散发同植被覆盖度呈正比.天然植被覆盖度同降水量的多少呈正比,在当地气候条件下,降水是天然荒漠植被类型和分布的控制因子.  相似文献   
89.
本文以台州市椒江景元花园康居工程为例,对刚柔性桩复合地基基本原理、设计理论进行论述,通过静荷载试验及建筑物沉降数据分析,证明新型复合地基在沿海深厚软土地区应用具有广泛的应用前景。  相似文献   
90.
本文介绍了沉管灌注桩施工时出现的问题以及防治措施,以满足施工要求及市场需求。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号