首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4280篇
  免费   1143篇
  国内免费   1367篇
测绘学   236篇
大气科学   1733篇
地球物理   1786篇
地质学   1085篇
海洋学   1142篇
天文学   282篇
综合类   195篇
自然地理   331篇
  2024年   42篇
  2023年   205篇
  2022年   218篇
  2021年   246篇
  2020年   199篇
  2019年   266篇
  2018年   183篇
  2017年   167篇
  2016年   161篇
  2015年   219篇
  2014年   298篇
  2013年   247篇
  2012年   295篇
  2011年   266篇
  2010年   271篇
  2009年   267篇
  2008年   247篇
  2007年   244篇
  2006年   234篇
  2005年   204篇
  2004年   195篇
  2003年   167篇
  2002年   162篇
  2001年   179篇
  2000年   116篇
  1999年   123篇
  1998年   135篇
  1997年   153篇
  1996年   145篇
  1995年   163篇
  1994年   136篇
  1993年   124篇
  1992年   105篇
  1991年   101篇
  1990年   107篇
  1989年   76篇
  1988年   31篇
  1987年   21篇
  1986年   16篇
  1985年   8篇
  1984年   7篇
  1983年   8篇
  1982年   6篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1976年   2篇
  1974年   2篇
  1960年   2篇
  1954年   5篇
排序方式: 共有6790条查询结果,搜索用时 203 毫秒
91.
Chebyshev逼近滤波器在位场分离中的应用   总被引:1,自引:0,他引:1  
在对经典FIR数字滤波器的设计方法进行研究的基础上,提出了一种可以用于位场分离的基于Chebyshev最佳一致逼近原理的FIR滤波器的设计方法。在理论模型实验中,采用基于Hanning窗的低通滤波器计算出的区域异常最大误差为6.266×10-6 m/s2 ,均方差为2.115×10-6 m/s2 ,最大百分比误差为22.2%,而且计算点在±9 km以外的误差均大于10.1%。而利用最佳一致逼近原理分离出的区域场和局部场与理论异常值拟合得较好,曲线基本重合。分离出的区域异常最大误差为3.101×10-6 m/s2 ,均方差为0.989×10-6 m/s2 ,最大百分比误差仅在边部的几个数据上,为7.76%,其余各点的误差均小于4.1%。实例检验中将该方法用于孙吴—嘉荫剖面布格重力异常场的分离,分离出的区域场中局部场残留少,分离彻底,效果较为理想。  相似文献   
92.
水文时间序列周期识别的新思路与两种新方法   总被引:3,自引:0,他引:3       下载免费PDF全文
桑燕芳  王栋 《水科学进展》2008,19(3):412-417
针对水文序列周期识别的困难,提出首先对原序列处理,再识别周期的新思路,同时提出两种新方法:一种是模拟延长序列法,即通过建模延长原序列,再应用最大熵谱分析法(MESA)对延长序列识别周期;另一种方法是构建主频序列法,应用小波重构法重构原序列主频部分,然后应用MESA对重构序列进行周期识别。结合实例,运用多种方法对同一序列进行周期识别。分析结果表明:由于受序列长度偏短、偏态性、复杂随机成分等因素的影响,传统单一处理方法(周期图法、FFT、MESA、小波分析)周期识别效果并不理想,而使用两种新方法可以有效地减小或消除上述因素的影响,周期识别效果有明显改善。  相似文献   
93.
北京市土壤Hg污染的区域生态地球化学评价   总被引:8,自引:1,他引:7  
城市土壤Hg异常/污染是中国普遍存在的重大生态环境问题。文章对北京市近1000km2范围内的地表土壤、壤中气、大气干湿沉降、大气颗粒物、大气中的Hg含量水平和空间分布模式进行了系统研究,查明北京地表土壤Hg平均含量为0.41mg/kg,大气干湿沉降物中的Hg平均含量为0.194mg/kg,壤中气Hg的平均含量为559.65ng/m3,大气颗粒物PM10和PM2.5中的Hg含量分别为0.59和0.67ng/m3,大气中的Hg平均含量为3.13ng/m3。北京市自2000年起实现了由燃煤转变为燃气的减排措施,导致干湿沉降物中的Hg沉降通量显著减少,2006年大气干湿沉降物中Hg的沉降通量1.837mg·m-2·a-1,北京市城区(近1000km2)Hg全年沉降为1837kg,空气中总Hg浓度由1998年的8.3~24.7ng/m3下降到2006年的3.13ng/m3,大气颗粒物中Hg含量由2003年的1.18ng/m3下降到2006年的0.59ng/m3(PM10)和0.67ng/m3(PM2.5),表明北京市煤改气减排措施的实施显著改善了大气环境质量。通过对土壤中Hg的存在形式研究,发现土壤中有硫化物(辰砂)及各种Hg盐(HgCl2)的含Hg矿物,Hg也可以各种吸附方式或壤中气方式存在。研究证实北京壤中气Hg与大气Hg存在显著的相关性(n=131,R=0.267,p<0.01),表明壤中气Hg是大气Hg的重要来源之一。利用2005年地表土壤总Hg与Hg释放速率的线性方程估算,土壤Hg平均释放速率为102.42ng·m-2·h-1,2005年土壤释放进大气的Hg通量为936.70kg。在查明土壤中存在大量辰砂矿物的同时,还分布有大量具有高温熔融特征的金属微球粒和玻璃质微球粒,证明燃煤和冶金烟尘是地表土壤Hg的主要来源。土壤中Hg、S、pH和辰砂颗粒浓度在空间上的高度耦合性表明,碱性条件下,土壤中高含量的S和Hg是辰砂形成的重要原因。按国家土壤环境质量标准,北京市I级土壤Hg环境质量的面积为176km2,Ⅱ级为808km2,Ⅲ级为24km2,超Ⅲ为36km2。Ⅲ级、超Ⅲ级主要分布在二环路以内的中心城区。城南(长安街为界)大气Hg环境质量明显优于城北,在北四、北五环之间的部分地区,大气颗粒Hg的环境质量为Ⅲ级或超Ⅲ级。在地表土壤Hg含量较高的中心城区,居民每天因呼吸摄入的Hg高达364ng,对人体健康构成潜在风险。根据我国"十一五"规划中每年实现10%节能减排的目标,对北京市未来50年土壤Hg含量的时空演变趋势预测,预测2050年北京因干湿沉降带来的Hg输入量为16.03kg,地表土壤释放Hg的输出量为37.36kg,明显大于Hg的输入通量,土壤Hg的环境质量将得到根本改善。预测到2040年Ⅲ级土壤Hg环境质量的区域将完全消失,到2060年以Ⅰ级土壤为主。  相似文献   
94.
论文研究了成都经济区天降水和下渗水中元素含量、在农田耕层中的输入输出通量及其影响因素.研究表明,研究区雨水中含有大量SO2-4、NO-3等酸性物质,雨水中SO2-4 >NO-3>Cl-.雨水中Ca2 和NH 4含量最高,且NH 4>Ca2 >K >Na >Mg2 .雨水的pH与阴、阳离子摩尔浓度差值具有显著相关性.下渗水中以Ca2 为主要阳离子,且Ca2 >Na >Mg2 >K >NH 4;HCO-3为主要阴离子,且HCO-3>NO-3>SO2-4>Cl->F-,下渗水pH与阳、阴离子摩尔浓度差值具有显著相关性.不同地区雨水中Pb>As>Cd>Se>Hg,下渗水中Pb>As>Se>Cd>Hg,因此,Cd、Pb、Se和Hg等元素累积在耕层中,而As则被下渗水携带迁移出耕层进入地下水.由降雨输入土壤中的Cd通量均大于下渗水输出Cd的通量,局部地区As下渗通量高于雨水输入通量的5.45~13.16倍.土壤中元素的下渗比与土壤质地、pH有关.  相似文献   
95.
汶川5月12日8.0级地震在构造上起因于印度板块与欧亚板块以每年约5 cm的速度聚敛,并因此而引起青藏高原的地壳物质向四川盆地及中国东南大陆运移.主震震源及余震活动集中于以龙门山为中轴的一条长约350 km、宽约100 km的地震活动带.震源深度一般分布丁地壳脆性-韧性转换边界以上约10~20 km区间的地壳震源层之中,属浅源构造地震.主要震源机制与龙门山构造运动方式密切相关,以其地壳厚度向西急剧加厚、重力梯度带、高波速比(Vp/Vs~2.2)等深部异常及逆冲断层兼具走滑性质的地质构造为特征.在震源辐射、路径传播和场地效应研究的基础上,分别计算并比较了岩石和土壤条件下的地震响应谱,特别强调了土壤条件下的场地放大效应;同时对与地震安全性有关的一些问题如地质灾害、地震频谱设计、地震早期预警系统及中、长期至短期地震预报等进行了探讨;特别提供了一个由加权平均计算、以岩石条件下震波衰减模式为基础的地震频谱设计参考实例.地震构造与动力学研究可融人工程地质与环境工程等学科发展.经历汶川地震考验的一些新近设计和建设的工程项目可为今后改进工程建筑规范与标准提供重要而有益的参考.地震预报是当今一大难题,但需探索研究,不可懈怠.地震减灾与预防足目前比较切合实际的安全举措.  相似文献   
96.
北京市有机氯农药填图与风险评价   总被引:2,自引:0,他引:2  
采用1个样/km2的密度、1个分析组合样/16km2的方法,对北京市784km2范围内的土壤、大气干湿沉降物、大气颗粒物中HCH、DDT的含量和空间分布特征进行有机氯农药填图.查明2000年北京市地表土壤HCH和DDT的平均含量分别为8.80±11.83ng/g、108.99±301.90ng/g.2006年大气干湿沉降物中HCH和DDT平均含量分别为10.09±9.60ng/g、12.99±13.51ng/g,HCH和DDT的年沉降通量分别为996.57±939.96g/a·km2、1291.53±1342.28g/a·km2.2006年大气颗粒物PM10和PM2.5中的HCH含量分别为0.294±0.205ng/m3和0.217±0.137ng/m3,DDT的平均含量分别为1.037±1.301ng/m3和0.522±0.773ng/m3,显著高于2002-2003年度大气颗粒物中HCH(PM100.01786ng/m3,PM250.01731ng/m3)和DDT(PM100.01672ng/m3,PM2.50.02353ng/m3)的含量,表明北京市或周边地区仍在使用含HCH和DDT化学成分的农药.以2000年北京地表土壤和2006年大气干湿沉降物中HCH和DDT的含量为基础,对2020年土壤中HCH和DDT的时空演变的预测显示,即使干湿沉降物中HCH和DDT的沉降通量每年以5%的速率递减,到2020年土壤中HCH和DDT的环境质量仍不能显著改善,而控制和削减北京及周边地区含HCH和DDT成分农药的使用将是改善北京地表土壤环境质量的关键措施.  相似文献   
97.
河流活性物质入海通量:概念与方法   总被引:1,自引:0,他引:1  
河流水体中呈溶解态和悬浮物结合态的元素活动性强,具有生态环境意义,查明其入海通量是当前生态地球化学评价的重要任务。通过总结前人的相关研究成果,确定了影响河流水体悬浮物的浓度及其矿物、化学组成的主要因素。从沿海经济带区域生态地球化学评价的实际需要出发,拟定了开展中国主要入海河流水溶态和悬浮物结合态元素入海通量调查的基本框架。  相似文献   
98.
北京农田生态系统土壤重金属元素的生态风险评价   总被引:9,自引:0,他引:9  
丛源  郑萍  陈岳龙  侯青叶 《地质通报》2008,27(5):681-688
2005-2006年期间,分别采集了北京农田生态系统的大气干湿沉降、灌溉水和化肥3种外源输入的样品,共计63件。3种来源样品的年输入通量的定量计算和对比表明,不同地区不同输入途径的重金属元素的年输入通量差异较大,研究区农田土壤中重金属元素的主要输入途径是大气干湿沉降。如果不考虑农田生态系统的外源输出量,按照目前的污染速度,50年后怀柔和大兴地区表层土壤中cd的含量可突破国家土壤环境质量碱性土壤的二级标准。污染情况比较严重,应引起足够的重视。其他地区的外源输入在相当长的一段时间内不会引起表层土壤重金属元素的含量发生质的变化。  相似文献   
99.
针对野外数据采集参数对分辨率的影响,对资料处理过程中静校正、反褶积、速度分析、Q补偿及谱白化等几个重要模块原理进行分析,指出在高速岩层中数据采集,应采用小药量激发,小道距,小排列,全三维,不组合、单点数字检波器接收。高密度多点采集,能够充分保护有效地质信息的高频成份,在更大范围内满足高分辨地震勘探的要求。资料处理过程中,在保证同相叠加和高信噪比的前提下,采用提高分辨率的模块以弥补地震波在传播过程中损失的高频成份。实践证明通过高保真、宽频带数据采集和高信噪比前提下的高分辨率数据处理,完全能够为矿井采掘提供高精度地震勘探资料。  相似文献   
100.
为了定量计算陵区近海核电站排水管线泄漏情景下核素通过地下水途径向海洋环境的释放通量,以某近海核电站为例进行研究。首先,应用GOCAD软件建立三维地形地质模型,刻画地层的分布、剥蚀以及倾向等特点;然后,运用地下水数值模拟软件FEFLOW精细刻画丘陵区地下水系统的补给、径流和排泄特征;最后,以不被吸附滞留的核素3H和被吸附滞留的核素90Sr、137Cs为对象,通过实验测定了90Sr、137Cs在不同岩土介质中的分配系数,模拟计算了排水管线连续渗漏60 a后3H、90Sr、137Cs在地下水中的放射性分布及释放。结果表明:3H迁移速度基本与地下水流速一致,地下水中的最大放射性浓度为0.285 0 Bq/L,第20 000天时向收纳水域的释放通量达到最大值,约526 Bq/d;90Sr吸附性能相对较弱,最大迁移距离约80 m,地下水中的最大放射性浓度为0.032 1 Bq/L;137Cs吸附能力较强,相当长的时间内被滞留在管线附近,地下水中最大放射性浓度分别为6.840×10-3 Bq/L,释放通量为0 Bq/d。由弥散度的不确定分析可知,弥散度越大,地下水中3H的最大放射性浓度越小,向海洋环境的释放通量越多。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号