首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2576篇
  免费   375篇
  国内免费   478篇
测绘学   55篇
大气科学   185篇
地球物理   872篇
地质学   815篇
海洋学   1103篇
天文学   38篇
综合类   103篇
自然地理   258篇
  2024年   9篇
  2023年   21篇
  2022年   61篇
  2021年   77篇
  2020年   87篇
  2019年   138篇
  2018年   81篇
  2017年   104篇
  2016年   104篇
  2015年   120篇
  2014年   118篇
  2013年   110篇
  2012年   114篇
  2011年   174篇
  2010年   125篇
  2009年   194篇
  2008年   243篇
  2007年   211篇
  2006年   154篇
  2005年   113篇
  2004年   124篇
  2003年   138篇
  2002年   131篇
  2001年   98篇
  2000年   92篇
  1999年   76篇
  1998年   71篇
  1997年   60篇
  1996年   49篇
  1995年   48篇
  1994年   41篇
  1993年   34篇
  1992年   29篇
  1991年   23篇
  1990年   12篇
  1989年   11篇
  1988年   10篇
  1987年   4篇
  1986年   2篇
  1985年   6篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   2篇
  1979年   2篇
  1973年   1篇
  1954年   1篇
排序方式: 共有3429条查询结果,搜索用时 15 毫秒
1.
P. Bonneton   《Ocean Engineering》2007,34(10):1459-1471
In this paper, we analyse the ability of the nonlinear shallow-water (NSW) equations to predict wave distortion and energy dissipation of periodic broken waves in the inner surf zone. This analysis is based on the weak-solution theory for conservative equations. We derive a new one-way model, which applies to the transformation of non-reflective periodic broken waves on gently sloping beaches. This model can be useful to develop breaking-wave parameterizations (in particular broken-wave celerity expression) in both time-averaged wave models and time-dependent Boussinesq-type models. We also derive a new wave set-up equation which provides a simple and explicit relation between wave set-up and energy dissipation. Finally, we compare numerical simulations of both, the NSW model and the simplified one-way model, with spilling wave breaking experiments and we find a good agreement.  相似文献   
2.
Based on the 1st order cnoidal wave theory, the nonlinear wave diffraction around a circular cylinder in shallow water is studied in this paper. The equation of the wave surface around the cylinder is formulated and by using this formula the wave surface elevation on the cylinder surface can be obtained. In this paper, the formula for calculating the cnoidal wave force on a circular cylinder is also derived. For the wave conditions which are often encountered in practical engineering designs, the ratios of the nonlinear wave forces to the linear wave forces are calculated, and the results are plotted in this paper for design purposes. In order to verify the theoretical results, model tests are conducted. After comparing the test results with the theoretical ones, it is concluded that, in shallow water, for the case of T g / d~(1/2) > 8-10 and H / d > 0.3, the cnoidal wave theory should be used to calculate the wave action on a cylindrical pier.  相似文献   
3.
南海波高熵和风速熵   总被引:4,自引:0,他引:4  
根据风速的统计分布,给出了有因次风速熵和无因次风速熵的定义及其计算方法,使用GEOSAT高度计1986年11月-1989年2月的有效波高和风速的资料,计算,分析了南海海域上的波高熵,风速熵,给出它们的时间变化特征和空间变化特征,并对不同随机量的无因次熵,即随机度进行了比较。  相似文献   
4.
A comparison of the diffraction of multidirectional random waves using several selected wave spectrum models is presented in this paper. Six wave spectrum models, Bretschneider, Pierson–Moskowitz, ISSC, ITTC, Mitsuyasu, and JONSWAP spectrum, are considered. A discrete form for each of the given spectrum models is used to specify the incident wave conditions. Analytical solutions based on both the Fresnel integrals and polynomial approximations of the Fresnel integrals and numerical solutions of a boundary integral approach have been used to obtain the two-dimensional wave diffraction by a semi-infinite breakwater at uniform water depth. The diffraction of random waves is based on the cumulative superposition of linear diffraction solution. The results of predicted random wave diffraction for each of the given spectrum models are compared with those of the published physical model presented by Briggs et al. [1995. Wave diffraction around breakwater. Journal of Waterway, Port, Coastal and Ocean Engineering—ASCE 121(1), 23–35]. Reasonable agreement is obtained in all cases. The effect of the directional spreading function is also examined from the results of the random wave diffraction. Based on these comparisons, the present model for the analysis of various wave spectra is found to be an accurate and efficient tool for predicting the random wave field around a semi-infinite breakwater or inside a harbor of arbitrary geometry in practical applications.  相似文献   
5.
The distribution of nonlinear wave crests is examined on the basis of a theoretical probability density previously given elsewhere (J. Eng. Mech. 120 (1994) 1009). Certain errors contained in the original theoretical density are corrected, and the corresponding exceedance distribution is derived. The resulting theoretical forms of the probability density and exceedance distribution are then slightly simplified and compared with nonlinear wave data gathered under hurricane conditions. The results indicate that the proposed theoretical forms describe the observed distributions of large wave crests better than the Rayleigh law. However, the quantitative accuracy of the predictions is somewhat poor, as is typical of approximate theories based on Gram–Charlier-type expansions.  相似文献   
6.
A finite-difference scheme and a modified marker-and-cell (MAC) algorithm have been developed to investigate the interactions of fully nonlinear waves with two- or three-dimensional structures of arbitrary shape. The Navier–Stokes (NS) and continuity equations are solved in the computational domain and the boundary values are updated at each time step by the finite-difference time-marching scheme in the framework of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is implemented by the marker-density function (MDF) technique developed for two fluid layers.To demonstrate the capability and accuracy of the present method, the numerical simulation of backstep flows with free-surface, and the numerical tests of the MDF technique with limit functions are conducted. The 3D program was then applied to nonlinear wave interactions with conical gravity platforms of circular and octagonal cross-sections. The numerical prediction of maximum wave run-up on arctic structures is compared with the prediction of the Shore Protection Manual (SPM) method and those of linear and second-order diffraction analyses based on potential theory and boundary element method (BEM). Through this comparison, the effects of non-linearity and viscosity on wave loading and run-up are discussed.  相似文献   
7.
The dimensions of sand ripples in full-scale oscillatory flows   总被引:1,自引:0,他引:1  
New large-scale experiments have been carried out in two oscillatory flow tunnels to study ripple regime sand suspension and net sand transport processes in full-scale oscillatory flows. The paper focuses on ripple dimensions and the new data are combined with existing data to make a large dataset of ripple heights and lengths for flows with field-scale amplitudes and periods. A feature of the new experiments is a focus on the effect of flow irregularity. The combined dataset is analysed to examine the range of hydraulic conditions under which oscillatory flow ripples occur, to examine the effects of flow irregularity and ripple three-dimensionality on ripple dimensions and to test and improve existing methods for predicting ripple dimensions.The following are the main conclusions. (1) The highest velocities in a flow time-series play an important role in determining the type of bedform occurring in oscillatory flow. Bedform regime is well characterised by mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth peak velocities in the case of irregular flow. (2) For field-scale flows, sand size is the primary factor determining whether equilibrium ripples will be 2D or 3D. 2D ripples occur when the sand D50 ≥ 0.30 mm and 3D ripples occur when D50 ≤ 0.22 mm (except when the flow orbital diameter is low). (3) Ripple type (2D or 3D) is the same for regular and irregular flows and ripple dimensions produced by equivalent regular and irregular flows follow a similar functional dependence on mobility number, with mobility number based on maximum velocity in the case of regular flow and based on the mean of the highest one tenth velocities in the case of irregular flow. For much of the ripple regime, ripple dimensions have weak dependency on mobility number and ripple dimensions are similar for regular and irregular flows with the same flow orbital amplitude. However, differences in ripples produced by equivalent regular and irregular flows become significant at the high mobility end of the ripple regime. (4) Ripple dimensions predicted using the Wiberg and Harris formulae are in poor agreement with measured ripple dimensions from the large-scale experiments. Predictions based on the Mogridge et al. and the Nielsen formulae show better overall agreement with the data but also show systematic differences in cases of 3D ripples and ripples generated by irregular flows. (5) Based on the combined large-scale data, modifications to the Nielsen ripple dimension equations are proposed for the heights and lengths of 2D ripples. The same equations apply to regular and irregular flows, but with mobility number appropriately defined. 3D ripples are generally smaller than 2D ripples and estimates of 3D ripple height and length may be obtained by applying multipliers of 0.55 and 0.73 respectively to the 2D formulae. The proposed modified Nielsen formulae provide an improved fit to the large-scale data, accounting for flow irregularity and ripple three-dimensionality.  相似文献   
8.
Wave-induced seabed instability, either momentary liquefaction or shear failure, is an important topic in ocean and coastal engineering. Many factors, such as seabed properties and wave parameters, affect the seabed instability. A non-dimensional parameter is proposed in this paper to evaluate the occurrence of momentary liquefaction. This parameter includes the properties of the soil and the wave. The determination of the wave-induced liquefaction depth is also suggested based on this non-dimensional parameter. As an example, a two-dimensional seabed with finite thickness is numerically treated with the EFGM meshless method developed early for wave-induced seabed responses. Parametric study is carried out to investigate the effect of wavelength, compressibility of pore fluid, permeability and stiffness of porous media, and variable stiffness with depth on the seabed response with three criteria for liquefaction. It is found that this non-dimensional parameter is a good index for identifying the momentary liquefaction qualitatively, and the criterion of liquefaction with seepage force can be used to predict the deepest liquefaction depth.  相似文献   
9.
The stochastic properties of the drag force maxima on a circular cylinder subjected to nonlinear random waves are investigated. Unseparated laminar high Reynolds number flow is considered. A simplified approach based on second order Stokes waves is presented, including the sum-frequency effect only. It is demonstrated how a drag force formula valid for regular linear waves can be used to find the cumulative distribution function of individual drag force maxima for nonlinear irregular waves. Here the [Wang, 1968] drag force coefficient is used.  相似文献   
10.
A model for solving the two-dimensional enhanced Boussinesq equations is presented. The model equations are discretised in space using an unstructured finite element technique. The standard Galerkin method with mixed interpolation is applied. The time discretisation is performed using an explicit three-step Taylor–Galerkin method. The model is extended to the surf and swash zone by inclusion of wave breaking and a moving boundary at the shoreline. Breaking is treated by an existing surface roller model, but a new procedure for the detection of the roller thickness is devised. The model is verified using four test cases and the results are compared with experimental data and results from an existing finite difference Boussinesq model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号