首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
大气科学   1篇
海洋学   32篇
天文学   6篇
综合类   1篇
  2021年   1篇
  2019年   5篇
  2018年   1篇
  2017年   2篇
  2016年   6篇
  2015年   1篇
  2014年   3篇
  2011年   1篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2005年   2篇
  2004年   3篇
  2002年   4篇
  1997年   1篇
  1991年   1篇
排序方式: 共有40条查询结果,搜索用时 218 毫秒
1.
仿鱼尾潜器推进系统的水动力分析   总被引:21,自引:3,他引:21  
以开发适用于小型潜器的仿生操纵与推进系统为研究背景 ,对金枪鱼的月牙形尾鳍进行水动力分析。文中将金枪鱼的尾鳍处理为在做横移和摇摆的耦合运动的同时 ,以某一匀速向前运动的月牙形刚性尾翼。计算中应用了双曲面元和压力库塔条件 ,利用面元法计算分析该三维尾翼的非定常水动力性能。探讨了前进速度、横荡和摇首的幅度、频率及其相位差对推进性能的影响  相似文献   
2.
仿生机器鱼作为一种高效、高机动的水下机器人,得到了科研人员的广泛关注,对BCF方式机器鱼尾鳍推进效率的研究是其中的重点方向。目前对尾鳍推进效率的优化研究,大多局限于尾鳍单一参数的优化,这与自然鱼类的游动状态相差甚远,因而不能真正达到推进效率最大化的目的。本文提出了尾鳍多参数优化方案,通过对尾鳍转动频率、摆动幅值、击水角度和摆动周期等参数的联合优化,得到一组特定游速下的参数值,结果表明本研究对象在游速0.6L m/s时(L为体长),数值计算推进效率为65.7%,仿真推进效率为64.3%的,均大于目前单一参数的优化结果,充分体现了尾鳍多参数配合的优越性。本文的研究,对提高仿生机器鱼的推进效率具有积极作用。  相似文献   
3.
The present paper describes results of the experimental investigation of a small-scale mono-hull model boat propelled by a localised flexural wave propagating along the plate of finite width forming the boat's keel. Forward propulsion of the boat was achieved through flexural wave propagation in the opposite direction, which is similar to the aquatic propulsion used in nature by stingrays. The model boat under consideration underwent a series of tests both in a Perspex water tank and in an experimental pool. In particular, the forward velocity of the boat has been measured for different frequencies and amplitudes of the flexural wave. The highest velocity achieved was 32 cm/s. The thrust and propulsive efficiency have been measured as well. The obtained value of the propulsive efficiency in the optimum regime was 51%. This indicates that the efficiency of this type of aquatic propulsion is comparable to that of dolphins and sharks (around 75%) and to that of a traditional propeller (around 70%). In contrast with a propeller though, the wave-like aquatic propulsion has the following advantages: it does not generate underwater noise and it is safe for people and marine animals.  相似文献   
4.
The invention of gravity-propelled interplanetary space travel (also known as “gravity-assist trajectories”) in the early 1960s broke the high-energy barrier of classical space travel based on reaction propulsion, and made possible the exploration of the entire solar system with instrumented spacecraft. In this concept, a free-fall spacecraft is launched from a launch planet P1 to a nearby planet P2 such that its gravitational field (superimposed on the gravitational field of the Sun) catapults the vehicle to another planet P3, which in turn is used to repeat the process. Thus, through a series of planetary encounters, a gravity-propelled trajectory P1-P2-P3-P4-…-PN is generated. This paper describes how the invention was conceived and how the difficult mathematical problem of computing the trajectories was solved in order to numerically investigate and use the invention in actual missions. The crucial roles played by the UCLA Computing Facility and the Departments of Mathematics and Physics are also described.  相似文献   
5.
We consider periodic halo orbits about artificial equilibrium points (AEP) near to the Lagrange points L 1 and L 2 in the circular restricted three body problem, where the third body is a low-thrust propulsion spacecraft in the Sun–Earth system. Although such halo orbits about artificial equilibrium points can be generated using a solar sail, there are points inside L 1 and beyond L 2 where a solar sail cannot be placed, so low-thrust, such as solar electric propulsion, is the only option to generate artificial halo orbits around points inaccessible to a solar sail. Analytical and numerical halo orbits for such low-thrust propulsion systems are obtained by using the Lindstedt Poincaré and differential corrector method respectively. Both the period and minimum amplitude of halo orbits about artificial equilibrium points inside L 1 decreases with an increase in low-thrust acceleration. The halo orbits about artificial equilibrium points beyond L 2 in contrast show an increase in period with an increase in low-thrust acceleration. However, the minimum amplitude first increases and then decreases after the thrust acceleration exceeds 0.415 mm/s2. Using a continuation method, we also find stable artificial halo orbits which can be sustained for long integration times and require a reasonably small low-thrust acceleration 0.0593 mm/s2.  相似文献   
6.
There is enormous potential for more mobile planetary surface science. This is especially true in the case of Mars because the ability to cross challenge terrain, access areas of higher elevation, visit diverse geological features and perform long traverses of up to 200 km supports the search for past water and life. Vehicles capable of a ballistic ‘hop’ have been proposed on several occasions, but those proposals using in-situ acquired propellants are the most promising for significant planetary exploration. This paper considers a mission concept termed Mars Reconnaissance Lander using such a vehicle. We describe an approach where planetary science requirements that cannot be met by a conventional rover are used to derive vehicle and mission requirements.The performance of the hopper vehicle was assessed by adding estimates of gravity losses and mission mass constraints to recently developed methods. A baseline vehicle with a scientific payload of 16.5 kg and conservatively estimated sub-system masses is predicted to achieve a flight range of 0.97 km. Using a simple consideration of system reliability, the required cumulative range of 200 km could be achieved with a probability of around 80%. Such a range is sufficient to explore geologically diverse terrains. We therefore plot an illustrative traverse in Hypanis Valles/Xanthe Terra, which encounters crater wall sections, periglacial terrain, aqueous sedimentary deposits and a traverse up an ancient fluvial channel. Such a diversity of sites could not be considered with a conventional rover. The Mars Reconnaissance Lander mission and vehicle presents some very significant engineering challenges, but would represent a valuable complement to rovers, static landers and orbital observations.  相似文献   
7.
In terms of the nonlinear characteristics of hydraulic propulsion system used in 3500 m rated work-class ROV (remotely operated underwater vehicle), the paper improved the responsiveness of the hydraulic propulsion system by adding an impulse signal to the input end of the system. Because the maximum static damping moment provided from water is much larger than the dynamic damping moment, it results in large dead zone of thrust during the startup process of the hydraulic propulsion system. The dead zone of thrust caused by static damping moment can be effectively reduced by adding a specific impulse signal to the input end of the propulsion system. The results of numerical simulations and underwater experiments show that using this method, the nonlinear characteristics of the hydraulic propulsion system have been significantly improved.  相似文献   
8.
Study of a jet-propulsion method for an underwater vehicle   总被引:1,自引:0,他引:1  
This paper investigates a novel jet-propulsion method for a submerged vehicle. The approach is based on flexible-tube, eccentric rotor, Downingtown-Huber type pumps. Equations of motion are derived for a craft driven by such pumps. In order to develop general insight into the overall dynamics of the system, simulations are carried out for the simple case of horizontal straight-line motion. Results are obtained for the vehicle velocity, distance traveled, pump speed, and energy consumption. Effect of drag forces on the operation of the craft is studied. Finally, the jet-propulsion system is compared with conventional screw-type propulsors via simulation.  相似文献   
9.
水下柔性鱼形机构原理及单尾鳍板水动力试验研究   总被引:4,自引:0,他引:4  
柔性鱼形机构是模拟鱼类运动的一种仿生机械系统。对鱼类运动的观察与研究 ,实质上是寻求水域中最优推进形式的过程 ,是工程优化设计的途径之一。在研究及优化柔性鱼形机构时涉及到水动力学及控制模型的问题 ,因此取出鱼形机构的尾鳍部分进行敞水试验 ,既能为有关模型的建立提供依据 ,更重要的是对鱼形机构的可行性进行论证  相似文献   
10.
由于地球磁场的影响,电磁编队可以在近地轨道稳定飞行,通过改变电磁卫星磁极的电流大小来保持一定的编队队形.虽然地球磁场通常被看作偶极场,并随地球旋转,但地球磁场与电磁力场之间的相互作用被认为是一种内力.当电磁卫星编队突然遇到障碍物需要积极避障时,电磁力作为内力不能改变编队方向,因此,必须对电磁卫星编队施加外力,以实现碰撞规避控制.本文研究了电推进技术在电磁卫星编队碰撞规避中的应用.在此过程中,电推进提供编队转向所需的外部推力,而电磁力作为辅助推力共同作用实现碰撞规避.电推进采用多模态霍尔推力器,基于模糊推断的LQR重构控制方法进行碰撞规避过程的控制,并通过数字仿真验证了控制方法的有效性.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号