首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7962篇
  免费   2646篇
  国内免费   2637篇
测绘学   28篇
大气科学   26篇
地球物理   3934篇
地质学   7787篇
海洋学   459篇
天文学   389篇
综合类   107篇
自然地理   515篇
  2024年   45篇
  2023年   104篇
  2022年   182篇
  2021年   305篇
  2020年   327篇
  2019年   606篇
  2018年   818篇
  2017年   822篇
  2016年   858篇
  2015年   814篇
  2014年   836篇
  2013年   1141篇
  2012年   932篇
  2011年   671篇
  2010年   609篇
  2009年   474篇
  2008年   557篇
  2007年   461篇
  2006年   456篇
  2005年   407篇
  2004年   332篇
  2003年   307篇
  2002年   239篇
  2001年   222篇
  2000年   222篇
  1999年   100篇
  1998年   55篇
  1997年   81篇
  1996年   29篇
  1995年   36篇
  1994年   45篇
  1993年   26篇
  1992年   29篇
  1991年   17篇
  1990年   9篇
  1989年   14篇
  1988年   8篇
  1987年   10篇
  1986年   4篇
  1985年   11篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
通过西澳科庭大学离子探针中心的远程测试,在双桥山群横涌组和安乐林组斑脱岩中获得大量锆石,其SHRIMP U-Pb加权平均年龄为831 Ma±5 Ma(横涌组)、829 Ma±5 Ma(安乐林组),在河上镇群上墅组中获得加权平均年龄767 Ma±5 Ma。锆石SHRIMP U-Pb年龄表明华南地区广为发育的双桥山群应归入新元古界,该年龄为标定双桥山群在地层柱中的位置提供了准确的年代学依据。  相似文献   
92.
任永健  张成信  孟庆伟 《地质学报》2022,96(7):2333-2347
本文通过岩石组合特征和区域对比,将张广才岭南部西蛤拉河子—大锅盔一带分布的浅变质地层重新厘定为杨木岗组。为了确定杨木岗组的形成时代和沉积物源,进行了碎屑锆石U- Pb年代学和微体古生物地层学研究。锆石大多数呈自形—半自形晶,显示典型振荡岩浆生长环带,暗示其岩浆成因。该地层中测得的两组碎屑锆石U- Pb产生多组谐和年龄,其中PM010- TW样品56个测点最小峰值(谐和)年龄为307 Ma,DB02- TW样品51个测点最小峰值(谐和)年龄为275 Ma;覆盖在杨木岗组之上的中生代二浪河组安山岩的定年结果为181. 1±0. 9 Ma,表明杨木岗组形成于早二叠世晚期。杨木岗组中获取疑源类化石组合出现了新元古代晚期—早寒武世和奥陶纪地层常见分子,结合碎屑锆石年龄结果,反映杨木岗组沉积时周围存在早古生代和中—新元古代地质体。碎屑沉积岩Al2O3/TiO2平均值为24. 44,稀土元素球粒陨石标准化曲线具有轻稀土富集、重稀土稳定和负Eu异常特征,结合碎屑锆石的年龄频数可以看出,确定杨木岗组的沉积物主要来源于沉积盆地周围的晚古生代早期中酸性火成岩,次要物源由沉积盆地周边的早古生代地质体和近地表的中—新元古代地质体提供。佳木斯地块为松嫩- 张广才岭地块上晚古生代地层的形成提供了部分物源,暗示佳木斯地块与松嫩- 张广才岭地块于早二叠世之前已完成拼合。  相似文献   
93.
Using the IRAM interferometer we have observed four carbon stars (U Cam, CIT6, Y CVn, IRC+40540) in the HCN(J=1 0) and CN(N=1 0) lines. Here we present some results for CIT6 and U Cam.  相似文献   
94.
Post-depositional mobility of137Cs,239+240Pu and210Pb was assessed in six small lake basins by comparing sedimentary nuclide profiles with their known fallout history. Laminae couplets, when present, were determined to be varves because the137Cs and239+240Pu 1963 fallout peaks are present in laminae couplets corresponding to years 1962–1964. There is no evidence of mobility of210Pb, because 1) mass accumulation rates based on210Pb agree with those based on137Cs and239+240Pu peak depths and with those based on varve counts, and 2)210Pb ages agree with varve ages. Significant mobility of137Cs is evident from the penetration of137Cs to depths 15–20 cm deeper than239+240Pu. Deep penetration of137Cs in spite of a sharp gradient below the peak is interpreted by a numerical model to suggest that137Cs is present in two distinct forms in these sediments, 67–82% as an immobile form and 18–33% reversibly adsorbed with a K d of approximately 5000. The profiles can be interpreted equally well assuming a small portionof the total137Cs was present as an extremely mobile phase (K d 5000) in the months to years following peak fallout, slowly becoming more strongly adsorbed. High NH 4 + concentrations in porewaters may enhance diffusion of the mobile form of137Cs, but not of the immobile form of137Cs that defines the sharp gradient. Mobility of137Cs is likely also enhanced by the low clay content and the high porosity of these sediments. Thus the first detection of137Cs in the sediments cannot automatically be assumed to correspond to a date of 1952 (initial testing of thermonuclear weapons), although the depth of the peak can be assumed to correspond to 1963 (the year of maximum fallout from testing of thermonuclear weapons).239+240Pu is a more reliable sediment chronometer than137Cs because it is significantly less mobile.This is the sixth of a series of papers to be published by this journal following the 20 th anniversary of the first application of210Pb dating of lake sediments. Dr P.G. Appleby is guest editing this series.  相似文献   
95.
We report here U–Pb electron microprobe ages from zircon and monazite associated with corundum- and sapphirine-bearing granulite facies rocks of Lachmanapatti, Sengal, Sakkarakkottai and Mettanganam in the Palghat–Cauvery shear zone system and Ganguvarpatti in the northern Madurai Block of southern India. Mineral assemblages and petrologic characteristics of granulite facies assemblages in all these localities indicate extreme crustal metamorphism under ultrahigh-temperature (UHT) conditions. Zircon cores from Lachmanapatti range from 3200 to 2300 Ma with a peak at 2420 Ma, while those from Mettanganam show 2300 Ma peak. Younger zircons with peak ages of 2100 and 830 Ma are displayed by the UHT granulites of Sengal and Ganguvarpatti, although detrital grains with 2000 Ma ages are also present. The Late Archaean-aged cores are mantled by variable rims of Palaeo- to Mesoproterozoic ages in most cases. Zircon cores from Ganguvarpatti range from 2279 to 749 Ma and are interpreted to reflect multiple age sources. The oldest cores are surrounded by Palaeoproterozoic and Mesoproterozoic rims, and finally mantled by Neoproterozoic overgrowths. In contrast, monazites from these localities define peak ages of between 550 and 520 Ma, with an exception of a peak at 590 Ma for the Lachmanapatti rocks. The outermost rims of monazite grains show spot ages in the range of 510–450 Ma.While the zircon populations in these rocks suggest multiple sources of Archaean and Palaeoproterozoic age, the monazite data are interpreted to date the timing of ultrahigh-temperature metamorphism in southern India as latest Neoproterozoic to Cambrian in both the Palghat–Cauvery shear zone system and the northern Madurai Block. The data illustrate the extent of Neoproterozoic/Cambrian metamorphism as India joined the Gondwana amalgam at the dawn of the Cambrian.  相似文献   
96.
In the East China Sea (ECS), there are some mud areas, including the south coastal mud area, the north coastal mud area, and the mud area to the southwest of Cheju Island. X-ray fluorescence (XRF) techniques and Thermal Ionization Mass Spectrometry (TIMS) were used to study the high-resolution sedimentary record of Pb concentrations and Pb stable isotopic compositions in the past one hundred and fifty years in the coastal mud of the ECS. Pb concentrations of a ^210Pb dating S5 core in the study area have increased rapidly since 1980, and reached the maximal value with 65.08 μg/g in 2000, corresponding to the fast economic development of China since the implementation of the "Reform and Open Policy" in 1978; ^206Pb/^207Pb ratios generally had stabilized at 1.195 from 1860 to 1966, and decreased gradually from 1966 to 2000, indicating that the anthropogenic source Pb contribution to the ECS has increased gradually since 1966, especially since 1980. Pb concentrations decreased distinctly from 2000 to 2003 and ^206Pb/^207Pb ratios increased from 2001 to 2003, corresponding closely to the ban of lead gasoline from 2000 in China. From 1950 to 2003, there occurred four distinct decrease events of ^206Pb/^207Pb, possibly responding to the Changjiang River (Yangtze River) catastrophic floods in 1998, 1991, 1981 and 1954; from 1860 to 1966, there were two decrease periods of ^206Pb/^207Pb, which may respond to the catastrophic floods of Changjiang River in 1931 and 1935, and 1870. As a result of the erosion and drowning by the catastrophic floods, the anthropogenic lead accumulated in soil and water environments over a long period of time was brought into the Changjiang River, then part of them was finally transported into the ECS, which leads to changes in Pb stable isotopic composition.  相似文献   
97.
Phosphogypsum is a waste by-product of the phosphate fertilizer industry that has relatively high concentrations of some U decay-series radionuclides such as ^226Ra and ^210Pb. The distribution and environmental mobility of radionuclides in phosphogypsum are an important concern because this gypsum by-product is used for wallboard, in agriculture and as a soil amendment. This study determined the distribution of ^226Ra, ^210Pb, within phosphogypsum stacks of varying age and among three size fractions (coarse: 〈0.212 mm; medium: 0.212-0.053 mm; fine: 〈0.053 mm), in phosphogypsum derived from Aqaba and Eshidiya fertilizer plants. The results indicated that ^226Ra and ^210Pb were generally uniformly distributed in phosphogypsum stacks and showed no significant difference in the concentration of these elements with the age of stack. In the Aqaba phosphogypsum ^226Ra was slightly 10% enriched in the coarse fraction, while ^210Pb was 10% enriched in the free size fraction. In the Eshidiya phosphogypsum ^226Ra and ^210Pb contents were both relatively enriched (10%) in the fine size fraction.  相似文献   
98.
The Barro Alto Complex and Juscelândia volcanosedimentary sequence are exposed in the central part of the Neoproterozoic Brasília belt of central Brazil. The former is a large (approximately 150 km long), boomerang-shaped, mafic-ultramafic, layered complex formed by two different intrusions metamorphosed under granulite facies. These rocks are tectonically overlain by rocks of the Juscelândia volcanosedimentary sequence, represented mainly by biotite-gneiss and amphibolite, or amphibolite facies metamorphic equivalents of rhyolite and basalt, respectively. New SIMS U–Pb zircon data and Sm–Nd isochron data presented herein help clarify the igneous and metamorphic evolution of the Juscelândia volcanosedimentary sequence, as well as its relationship with the Barro Alto Complex. Zircon grains from two biotite gneisses were analyzed by SIMS (SHRIMP) and indicate Mesoproterozoic dates, approximately 1.28 Ga, interpreted as the time of bimodal volcanism in a tectonic setting transitional between a continental rift and an ocean basin. Metamorphism is constrained by Sm–Nd garnet-whole-rock isochrons for garnet amphibolite and pelitic schists of the Juscelândia sequence, as well as for clinopyroxene-garnet amphibolite and garnet granulite of the Barro Alto Complex, which give ages between 0.74 and 0.76 Ga, in agreement with SIMS dates for metamorphic zircon rims. These new data are significant, because they establish that a single metamorphic event affected both the Barro Alto Complex and the Juscelândia sequence. Based on these new data, we present a modified tectonic model for the Brasília belt.  相似文献   
99.
Detrital zircon reference for the North China block   总被引:17,自引:0,他引:17  
U–Pb analyses of 250 single detrital zircons from Upper Proterozoic to Ordovician strata collected from the Zhuozi Shan in north-central China provide a detrital zircon reference for the North China block, a major crustal entity in the Asian tectonic collage. The results, which range in age from 1.72 to 2.97 Ga, shed new light on the age of the crystalline basement in North China, much of which is covered by younger sedimentary units. In addition, this detrital zircon reference can be used to help determine the provenance of clastic sedimentary units and for assessing validity of paleogeographic and regional tectonic models that include the complex history of Asian continental amalgamation, terrane accretion, and subsequent translation that is ongoing today.  相似文献   
100.
New results on the pressure–temperature–time evolution, deduced from conventional geothermobarometry and in situ U‐Th‐total Pb dating of monazite, are presented for the Bemarivo Belt in northern Madagascar. The belt is subdivided into a northern part consisting of low‐grade metamorphic epicontinental series and a southern part made up of granulite facies metapelites. The prograde metamorphic stage of the latter unit is preserved by kyanite inclusions in garnet, which is in agreement with results of the garnet (core)‐alumosilicate‐quartz‐plagioclase (inclusions in garnet; GASP) equilibrium. The peak metamorphic stage is characterized by ultrahigh temperatures of ~900–950 °C and pressures of ~9 kbar, deduced from GASP equilibria and feldspar thermometry. In proximity to charnockite bodies, garnet‐sillimanite‐bearing metapelites contain aluminous orthopyroxene (max. 8.0 wt% Al2O3) pointing to even higher temperatures of ~970 °C. Peak metamorphism is followed by near‐isothermal decompression to pressures of 5–7 kbar and subsequent near‐isobaric cooling, which is demonstrated by the extensive late‐stage formation of cordierite around garnet. Internal textures and differences in chemistry of metapelitic monazite point to a polyphasic growth history. Monazite with magmatically zoned cores is rarely preserved, and gives an age of c. 737 ± 19 Ma, interpreted as the maximum age of sedimentation. Two metamorphic stages are dated: M1 monazite cores range from 563 ± 28 Ma to 532 ± 23 Ma, representing the collisional event, and M2 monazite rims (521 ± 25 Ma to 513 ± 14 Ma), interpreted as grown during peak metamorphic temperatures. These are among the youngest ages reported for high‐grade metamorphism in Madagascar, and are supposed to reflect the Pan‐African attachment of the Bemarivo Belt to the Gondwana supercontinent during its final amalgamation stage. In the course of this, the southern Bemarivo Belt was buried to a depth of >25 km. Approximately 25–30 Myr later, the rocks underwent heating, interpreted to be due to magmatic underplating, and uplift. Presumably, the northern part of the belt was also affected by this tectonism, but buried to a lower depth, and therefore metamorphosed to lower grades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号