首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15192篇
  免费   3335篇
  国内免费   4340篇
测绘学   1827篇
大气科学   1675篇
地球物理   4625篇
地质学   9678篇
海洋学   2207篇
天文学   264篇
综合类   1166篇
自然地理   1425篇
  2024年   42篇
  2023年   156篇
  2022年   422篇
  2021年   555篇
  2020年   595篇
  2019年   818篇
  2018年   650篇
  2017年   742篇
  2016年   748篇
  2015年   867篇
  2014年   1075篇
  2013年   1007篇
  2012年   1112篇
  2011年   1141篇
  2010年   1045篇
  2009年   1117篇
  2008年   1044篇
  2007年   1159篇
  2006年   1152篇
  2005年   962篇
  2004年   920篇
  2003年   764篇
  2002年   589篇
  2001年   512篇
  2000年   515篇
  1999年   483篇
  1998年   453篇
  1997年   399篇
  1996年   328篇
  1995年   286篇
  1994年   272篇
  1993年   204篇
  1992年   186篇
  1991年   126篇
  1990年   95篇
  1989年   118篇
  1988年   72篇
  1987年   51篇
  1986年   26篇
  1985年   17篇
  1984年   6篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1972年   1篇
  1954年   12篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
41.
提出川滇地洼系“四层楼”铜矿床序列的形成与陆壳演化的成生联系,是与本区陆壳由前地槽—地槽—地台—地洼演化各阶段与之相匹配的成矿作用的产物.与此同时,并总结了本区“四层楼”铜矿床序列的成矿作用具有明显的继承性、新生性、旋回性及层控性四大特点和多因复成矿床的成矿模式.  相似文献   
42.
The true potential energy curves for the electronic ground states of astrophysically important AlH and CaH molecules are constructed by the Rydberg-Klein-Rees method. Empirical potential functions, of three-parameters by Lippincott, of five-parameters by Hulburt and Hirsch-felder and, of electronegativity by Szöke and Baitz, are examined for the adequacy to represent the true curve. From the best-fitting function, the dissociation energiesD 0 0 of AlH and CaH molecules are estimated to be 2.99 ± 0.08 and 2.72 ± 0.06 eV respectively. The force constants indicate that these values are of correct magnitude.  相似文献   
43.
火试金法测定铜精矿中金含量结果的不确定度评定   总被引:2,自引:0,他引:2  
对火试金法测定铜精矿中金含量的结果进行不确定度评定。分析了铜精矿样品称量、铜精矿样品的不均匀性和配料处理,以及金粒称量等因素对金含量测量结果不确定度的影响,并得出火试金法测量铜精矿中金含量的扩展不确定度。  相似文献   
44.
The backward particle tracking method, an effective and powerful tool that can be used to delineate groundwater protection zones, is presented. The theoretical background and insights on the applicability of this method are provided. Moreover, the present work enriches the backward particle tracking method with an uncertainty analysis concerning the porosity values, applying a Monte Carlo (MC) approach, coupled with the use of geographical information systems (GIS). As an application example, a wellfield in the Komotini area, Greece, is investigated. The present study may serve as a potential guideline for wellfield delineation, particularly in areas like Greece where lack of data related to the hydrogeological system is often a problem.  相似文献   
45.
Ground vibrations generated by commercial explosives in tunnel construction may cause structural damage in urban areas. Therefore, suppressing the vibration effects and mitigating the possible hazard after blasting is important. We present a new method of controlled blasting that is environmentally friendly, and easy to utilize for tunnel construction. Small charges in this method are detonated sequentially to produce minimum side effects. The efficiency of the charges may be increased based on the previously monitored shots. This method is utilized in a tunnel construction in Istanbul with five experimental shots. In these experiments, the duration and also the quantity of explosives were carefully controlled. We were able to obtain better results with short durations (480 ms) instead of long durations (9,000 ms) although the vibration levels defined as peak particle velocity (PPV) became bigger while the quantity of the explosive charge increased from 3.088 to 9.264 kg.  相似文献   
46.
This paper presents an example of application of the double solid reactant method (DSRM) of Accornero and Marini (Environmental Geology, 2007a), an effective way for modeling the fate of several dissolved trace elements during water–rock interaction. The EQ3/6 software package was used for simulating the irreversible water–rock mass transfer accompanying the generation of the groundwaters of the Porto Plain shallow aquifer, starting from a degassed diluted crateric steam condensate. Reaction path modeling was performed in reaction progress mode and under closed-system conditions. The simulations assumed: (1) bulk dissolution (i.e., without any constraint on the kinetics of dissolution/precipitation reactions) of a single solid phase, a leucite-latitic glass, and (2) precipitation of amorphous silica, barite, alunite, jarosite, anhydrite, kaolinite, a solid mixture of smectites, fluorite, a solid mixture of hydroxides, illite-K, a solid mixture of saponites, a solid mixture of trigonal carbonates and a solid mixture of orthorhombic carbonates. Analytical concentrations of major chemical elements and several trace elements (Cr, Mn, Fe, Ni, Cu, Zn, As, Sr and Ba) in groundwaters were satisfactorily reproduced. In addition to these simulations, similar runs for a rhyolite, a latite and a trachyte permitted to calculate major oxide contents for the authigenic paragenesis which are comparable, to a first approximation, with the corresponding data measured for local altered rocks belonging to the silicic, advanced argillic and intermediate argillic alteration facies. The important role played by both the solid mixture of trigonal carbonates as sequestrator of Mn, Zn, Cu and Ni and the solid mixture of orthorhombic carbonates as scavenger of Sr and Ba is emphasized.
Luigi Marini (Corresponding author)Email:
  相似文献   
47.
As the literature on trail development suggests, recreational trail projects can generate conflicts and controversies, particularly when built on abandoned rail corridors through developed areas. These conflicts are often understood as “not in my back yard” (NIMBY) reactions, suggesting a spatial proximity to conflict which increases as one draws closer to the proposed trail. This research seeks to understand local residents’ perceptions and reactions to recreational trail development in the City of Delaware (Ohio, USA). It addresses two spatially infused questions: Does the potential for conflict related to trail development increase as people live closer to a potential trail (the NIMBY factor)? Can important qualitative factors about favorable and unfavorable land uses including potential recreational trail sites be defined using a participatory methodology and then represented in GIS? The study used a mixed-method approach to collect and analyze qualitative data from a group of local residents. Each participant was interviewed and asked to sort 19 pictures related to trail development. After each of the sorts, participants were asked to explain why they ranked the pictures the way they did. Results of the picture sorts were then analyzed using Q method and mapped with GIS. The results show that spatial proximity matters in the context of trail development and potential NIMBY reactions to trails. Significant differences were found in the picture sorts that reveal the importance of proximity and location, although in a manner contrary to the assumptions in the writings on rails-to-trails. Through combining qualitative methods, Q analysis and PPGIS analysis, the research shows that qualitative place-based studies are capable of generating insights about the complexities of situated geographic change such as recreational trail development.  相似文献   
48.
Isotopic-geochronological study of the Pliocene magmatic activity in western part of the Dzhavakheti Highland (northwestern region of the Lesser Caucasus) is carried out. The results obtained imply that the Pliocene magmatic activity lasted in this part of the highland approximately 2 million years from 3.75 to 1.75–1.55 Ma. As is established, the studied volcanic rocks correspond in composition mostly to K-Na subalkaline and more abundant normal basalts. Time constraints of main phases in development of basic volcanism within the study region are figured out. We assume that individual pulses of silicic to moderately silicic volcanism presumably took place in the Dzhavakheti Highland about 3.2 and 2.5 Ma ago.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号