首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   28篇
  国内免费   7篇
测绘学   4篇
大气科学   4篇
地球物理   77篇
地质学   9篇
海洋学   1篇
自然地理   16篇
  2024年   3篇
  2023年   2篇
  2022年   1篇
  2021年   9篇
  2020年   10篇
  2019年   9篇
  2018年   6篇
  2017年   10篇
  2016年   3篇
  2015年   7篇
  2014年   9篇
  2013年   12篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  2000年   1篇
  1997年   2篇
排序方式: 共有111条查询结果,搜索用时 31 毫秒
11.
Postfire runoff and erosion are a concern, and more data are needed on the effects of wildfire at the watershed‐scale, especially in the Colorado Front Range. The goal of this study was to characterize and compare the streamflow and suspended sediment yield response of two watersheds (Bobcat Gulch and Jug Gulch) after the 2000 Bobcat fire. Bobcat Gulch had several erosion control treatments applied after the fire, including aerial seeding, contour log felling, mulching, and straw wattles. Jug Gulch was partially seeded. Study objectives were to: (1) measure precipitation, streamflow, and sediment yields; (2) assess the effect of rainfall intensity on peak discharges, storm runoff, and sediment yields; (3) evaluate short‐term hydrologic recovery. Two months after the fire, a storm with a maximum 30 min rainfall intensity I30 of 42 mm h?1 generated a peak discharge of 3900 l s?1 km?2 in Bobcat Gulch. The same storm produced less than 5 l s?1 km?2 in Jug Gulch, due to less rainfall and the low watershed response. In the second summer, storms with, I30 of 23 mm h?1 and 32 mm h?1 generated peak discharges of 1100 l s?1 km?2 and 1700 l s?1 km?2 in the treated and untreated watersheds respectively. Maximum water yield efficiencies were 10% and 17% respectively, but 18 of the 23 storms returned ≤2% of the rainfall as runoff, effectively obscuring interpretation of the erosion control treatments. I30 explained 86% of the variability in peak discharges, 74% of the variability in storm runoff, and >80% of the variability in sediment yields. Maximum single‐storm sediment yields in the second summer were 370 kg ha?1 in the treated watershed and 950 kg ha?1 in the untreated watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
12.
Understanding sedimentation patterns in small coastal watersheds due to landscape perturbations is critical for connecting hillslope and fluvial processes, in addition to managing aquatic habitats for anadromous fish and other aquatic species in the Oregon Coast Range (OCR). Changes in sedimentation patterns spanning the last 250 years are preserved in two landslide-dammed lakes in small watersheds (< 10 km2) underlain by the Tyee Formation in the central OCR. Dendrochronology of drowned Douglas-fir stumps in both lakes provided precise timing of the damming and formation of the lakes, with Klickitat Lake forming in winter ad 1751/52 and Wasson Lake in winter ad 1819/20. Perturbations from wildfires, logging and road development, and previously underappreciated snow events affect sedimentation rates in the lakes to different degrees, and are identified in the sediment record using cesium-137 (137Cs), high-resolution charcoal stratigraphy, local fire records, and aerial photography. Each lake has variable sedimentation accumulation rates (0.05–4.4 cm yr−1) and mass accumulation rates (0.02–1.42 g cm−2 yr−1). Sedimentation rates remained low from the landslide-damming events until the mid-19th century, when they increased following stand-replacing wildfires. Aside from a sediment remobilization triggered by human modification of the landslide dam at Klickitat Lake around 1960, the largest peaks in mass accumulation rates in the mid-20th century at both lakes in the early 1950s precede major road construction and logging activity in the watersheds. Subsequent sedimentation rates are lower, but variable, and possible effects of logging and road development might be exacerbated by abnormal precipitation and heavy snow events. A comparison of previous studies of landslide-dammed lakes in larger watershed of the OCR are consistent with our findings of increased sedimentation in the mid-20th century, as well as higher sedimentation rates in the debris-flow dominated southern Tyee Formation than in the lower-relief northern Tyee Formation.  相似文献   
13.
Wildfires are landscape scale disturbances that can significantly affect hydrologic processes such as runoff generation and sediment and nutrient transport to streams. In Fall 2016, multiple large drought-related wildfires burned forests across the southern Appalachian Mountains. Immediately after the fires, we identified and instrumented eight 28.4–344 ha watersheds (four burned and four unburned) to measure vegetation, soil, water quantity, and water quality responses over the following two years. Within burned watersheds, plots varied in burn severity with up to 100% tree mortality and soil O-horizon loss. Watershed scale high burn severity extent ranged from 5% to 65% of total watershed area. Water quantity and quality responses among burned watersheds were closely related to the high burn severity extent. Total water yield (Q) was up to 39% greater in burned watersheds than unburned reference watersheds. Total suspended solids (TSS) concentration during storm events were up to 168 times greater in samples collected from the most severely burned watershed than from a corresponding unburned reference watershed, suggesting that there was elevated risk of localized erosion and sedimentation of streams. NO3-N concentration, export, and concentration dependence on streamflow were greater in burned watersheds and increased with increasing high burn severity extent. Mean NO3-N concentration in the most severely burned watershed increased from 0.087 mg L−1 in the first year to 0.363 mg L−1 (+317%) in the second year. These results suggest that the 2016 wildfires degraded forest condition, increased Q, and had negative effects on water quality particularly during storm events.  相似文献   
14.
Current global warming projections suggest a possible increase in wildfire and drought, augmenting the need to understand how drought following wildfire affects the recovery of stream channels in relation to sediment dynamics. We investigated post‐wildfire geomorphic responses caused by storms during a prolonged drought following the 2013 Springs Fire in southern California (USA), using multi‐temporal terrestrial laser scanning and detailed field measurements. After the fire, a dry‐season dry‐ravel sediment pulse contributed sand and small gravel to hillslope‐channel margins in Big Sycamore Creek and its tributaries. A small storm in WY 2014 generated sufficient flow to mobilize a portion of the sediment derived from the dry‐ravel pulse and deposited the fine sediment in the channel, totaling ~0.60 m3/m of volume per unit length of channel. The sediment deposit buried step‐pool habitat structure and reduced roughness by over 90%. These changes altered sediment transport characteristics of the bed material present before and after the storm; the ratio of available to critical shear stress (τoc) increased by five times. Storms during WY 2015 contributed additional fine sediment from tributaries and lower hillslopes and hyperconcentrated flow transported and deposited additional sediment in the channel. Together these sources delivered sediment on the order of six times that in 2014, further increasing τo/τc. These storms during multi‐year drought following wildfire transformed channel dynamics. The increased sediment transport capacity persisted during the drought period characterized by the longer residence time of relatively fine‐grained post‐fire channel sedimentation. This contrasts with wetter years, when post‐fire sediment is transported from the fluvial system during the same season as the post‐fire sediment pulse. Results of this short‐term study highlight the complex and substantial effects of multi‐year drought on geomorphic responses following wildfire. These responses influence pool habitat that is critical to longer‐term post‐wildfire riparian ecosystem recovery. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
15.
A wildfire in an afforested research catchment presented the rare opportunity to compare the hydrological effects of wildfire with the effects of clearfelling in the same catchment in the Jonkershoek Valley, in the south-western Western Cape Province of South Africa. The timber plantation, which occupies 57% of the 2 km2 catchment, had been clearfelled and re-planted to Pinus radiata roughly five years before the fire. The effects of the two treatments on total flow, storm-flow and quick-flow volumes, peak discharge and storm response ratio were determined by means of multiple regression analysis, employing the dummy variable method to test for the significance of treatments. Both clearfelling and wildfire caused significant increases in all the stream-flow variables analysed. But the clearfelling effect was dominated by large increases in total flow (96% over three years), of which storm-flow and quick-flow volumes formed only minor parts. After the wildfire, by contrast, increases in total flow were small (12%) but the storm flow increases were three- to four-fold in the first year and roughly double in the second year. The wildfire caused fire-induced water repellency in the soils which led to overland flow on mid-slope sites, where soil infiltrability normally far exceeds local rainfall intensities. It is argued that these results support the hypothesis that stream-flow generation processes were changed by the wildfire in that overland flow made a direct contribution to storm flows, but that clearfelling had no such effect. © 1997 by John Wiley & Sons, Ltd.  相似文献   
16.
AbstractUsing observations from 688 debris flows, we analyse the hydrologic and landscape characteristics that influenced debris-flow initiation mechanisms and locations in a watershed that had been partially burned by the 2012 Whitewater-Baldy Complex Fire in the Gila Mountains, southern New Mexico. Debris flows can initiate due to different processes. Slopes can fail as discrete landslides and then become fluidized and move downstream as debris flows (landslide initiated) or progressive bulking of sediment from a distributed area can become channelized and concentrated as it moves downslope (runoff generated). In this study, we have an unusual opportunity to investigate both types of debris-flow initiation mechanisms in our observations of debris flows, triggered by an exceptional rainstorm in the autumn of 2013. Additionally, we compare our observations with those of a dataset of 1138 debris flows in the Colorado Front Range, triggered during the same weather system. We found that runoff-generated debris flows dominated in burn areas, and runoff required to start these flows could be well characterized by the Shields stress. Landslide-initiated debris flows were dominant in unburned areas. Debris-flow densities were tied to total rainfall and precipitation intensities. Like the observations in the Colorado Front Range, debris-flow initiation locations were found primarily in areas of relatively sparse vegetation on south-facing slopes between 25 and 40°, and with upslope contributing areas less than 1000 m2. In terms of preferential locations for debris-flow initiations, 2013 vegetation coverage, approximated by Green–Red Vegetation Index metrics, proved to be more influential than the 2012 burn-severity designation. The uniformity of observations between our study area and those in the Colorado Front Range indicate that the underlying hydrologic and landscape patterns of the debris-flow initiation locations documented in these studies could be applicable to the wider southwest and Rocky Mountain regions. © 2019 John Wiley & Sons, Ltd.  相似文献   
17.
Field studies that investigate sediment transport between debris-flow-producing headwaters and rivers are uncommon, particularly in forested settings, where debris flows are infrequent and opportunities for collecting data are limited. This study quantifies the volume and composition of sediment deposited in the arterial channel network of a 14-km2 catchment (Washington Creek) that connects small, burned and debris-flow-producing headwaters (<1 km2) with the Ovens River in SE Australia. We construct a sediment budget by combining new data on deposition with a sediment delivery model for post-fire debris flows. Data on deposits were plotted alongside the slope–area curve to examine links between processes, catchment morphometry and geomorphic process domains. The results show that large deposits are concentrated in the proximity of three major channel junctions, which correspond to breaks in channel slope. Hyperconcentrated flows are more prominent towards the catchment outlet, where the slope–area curve indicates a transition from debris flow to fluvial domains. This shift corresponds to a change in efficiency of the flow, determined from the ratio of median grain size to channel slope. Our sediment budget suggests a total sediment efflux from Washington Creek catchment of 61 × 103 m3. There are similar contributions from hillslopes (43 ± 14 × 103 m3), first to third stream order channel (35 ± 12 × 103 m3) and the arterial fourth to fifth stream order channel (31 ± 17 × 103 m3) to the total volume of erosion. Deposition (39 ± 17 × 103 m3) within the arterial channel was higher than erosion (31 ± 17 × 103 m3), which means a net sediment gain of about 8 × 103 m3 in the arterial channel. The ratio of total deposition to total erosion was 0.44. For fines <63 μm, this ratio was much smaller (0.11), which means that fines are preferentially exported. This has important implications for suspended sediment and water quality in downstream rivers. © 2019 John Wiley & Sons, Ltd.  相似文献   
18.
Wildfires represent one of the largest disturbances in watersheds of the Intermountain West. Yet, we lack models capable of predicting post-wildfire impacts on downstream ecosystems and infrastructure. Here we present a novel modeling framework that links new and existing models to simulate the post-wildfire sediment cascade, including spatially explicit predictions of debris flows, storage of debris flow sediment within valleys, delivery of debris flow sediment to active channels, and the downstream routing of sediment through river networks. We apply the model to sediment dynamics in Clear Creek watershed following the 2010 Twitchell Canyon Fire in the Tushar Mountains of southern Utah. The debris flow generation model performed well, correctly predicting 19 out of 20 debris flows from the largest catchments, with only four false positives and two false negatives at observed rainfall intensities. In total, the model predicts the occurrence of 160 post-wildfire debris flows across the Clear Creek watershed, generating more than 650 000 m3 of sediment. Our new storage and delivery model predicts the vast majority of this sediment is stored within valleys, and only 13% is delivered to the river network. The sediment routing model identifies numerous sediment bottlenecks within the network, which alter transport dynamics and may be hotspots for aggradation and aquatic habitat alteration. The volume of sediment exported from the watershed after seven years of simulation totals 17% of that delivered, or 2% of the total generated debris flow sediment. In the case of the Twitchell Canyon Fire, this highlights that significant post-wildfire sediment volumes can be stored in valleys (87%) and within the stream network (11%). Finally, we discuss useful insights that can be gleaned from the model framework, as well as the limitations and need for more monitoring and theory development in order to better constrain essential inputs, process rates, and morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   
19.
In the sub‐humid Western Boreal Plains of Alberta, where evapotranspiration often exceeds precipitation, trembling aspen (Populus tremuloides Michx.) uplands often depend on adjacent peatlands for water supply through hydraulic redistribution. Wildfire is common in the Boreal Plains, so the resilience of the transfer of water from peatlands to uplands through roots immediately following wildfire may have implications for aspen succession. The objective of this research was to characterize post‐fire peatland‐upland hydraulic connectivity and assess controls on aspen transpiration (as a measure of stress and productivity) among landscape topographic positions. In May 2011, a wildfire affected 90,000 ha of north central Alberta, including the Utikuma Region Study Area (URSA). Portions of an URSA glacio‐fluval outwash lake catchment were burned, which included forests and a small peatland. Within 1 year after the fire, aspen were found to be growing in both the interior and margins of this peatland. Across recovering land units, transpiration varied along a topographic gradient of upland midslope (0.42 mm hr?1) > upland hilltop (0.29 mm hr?1) > margin (0.23 mm hr?1) > peatland (0.10 mm hr?1); similar trends were observed with leaf area and stem heights. Although volumetric water content was below field capacity, P. tremuloides were sustained through roots present, likely before fire, in peatland margins through hydraulic redistribution. Evidence for this was observed through the analysis of oxygen (δ18O) and hydrogen (δ2H) isotopes where upland xylem and peat core signatures were ?10.0‰ and ?117.8‰ and ?9.2‰ and ?114.0‰, respectively. This research highlights the potential importance of hydraulic redistribution to forest sustainability and recovery, in which the continued delivery of water may result in the encroachment of aspen into peatlands. As such, we suggest that through altering ecosystem services, peatland margins following fire may be at risk to aspen colonization during succession.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号