首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   186篇
  国内免费   275篇
测绘学   5篇
大气科学   339篇
地球物理   232篇
地质学   290篇
海洋学   124篇
天文学   78篇
综合类   14篇
自然地理   34篇
  2024年   5篇
  2023年   7篇
  2022年   25篇
  2021年   22篇
  2020年   20篇
  2019年   36篇
  2018年   33篇
  2017年   29篇
  2016年   22篇
  2015年   31篇
  2014年   40篇
  2013年   82篇
  2012年   46篇
  2011年   33篇
  2010年   39篇
  2009年   48篇
  2008年   52篇
  2007年   57篇
  2006年   55篇
  2005年   41篇
  2004年   36篇
  2003年   41篇
  2002年   35篇
  2001年   26篇
  2000年   27篇
  1999年   23篇
  1998年   21篇
  1997年   24篇
  1996年   25篇
  1995年   37篇
  1994年   24篇
  1993年   15篇
  1992年   7篇
  1991年   11篇
  1990年   8篇
  1989年   4篇
  1988年   9篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
排序方式: 共有1116条查询结果,搜索用时 406 毫秒
31.
R JANA  M V KHIRE 《地理学报》2004,14(1):25-31
The present study aims the evaluation of bio-physical characteristics towards soil-water-vegetation stress and a rule is envisaged to assess the degree of temporal changes. The digital rule for assessment is initialized through the index of land Instability (ILI) where the variance indicates the temporal instability of the pixel i.e., smallest land unit. It is assumed that the biophysical characteristic of land is in command of land-dynamics where there is no change in Land Use/Land Cover (LU&LC). The intensity map on tendency of albedo (IALB) assesses the intensity of soil erosion and water stress whereas intensity map on tendency of NDVI (INDVI) appraises the stress on vegetation. The carry-out study covers a part of semiarid Western India. Primarily remote sensing technique, which carries the digital information of land temporally and spatially, is adopted in this paper. A part of the study area is represented using two sets of IRS 1A/1B LISS-I data of March with a decadal time domain (1989-1998) as a test area. It is assumed that the soil-water-vegetation stress is maximum during summer(March-April-May) in any tropical belt and decadal data will stretch the possibility of climate as well as man-made activity over the land.  相似文献   
32.
Gravity waves play a significant role in establishing the large-scale circulation and structure of the middle atmosphere. Through gravity wave saturation proc-esses, such motions are believed to cause turbulence, resulting in divergence of momentum flux and the diffusion of heat and constituents in the meso-sphere[1,2]. The mechanisms that contribute signifi-cantly to the gravity wave saturation are thought to be the dynamical and convective instabilities[3]. However, it is difficult to distin…  相似文献   
33.
Numerical modeling has now become an indispensable tool for investigating the fundamental mechanisms of toxic nonaqueous phase liquid (NAPL) removal from contaminated groundwater systems. Because the domain of a contaminated groundwater system may involve irregular shapes in geometry, it is necessary to use general quadrilateral elements, in which two neighbor sides are no longer perpendicular to each other. This can cause numerical errors on the computational simulation results due to mesh discretization effect. After the dimensionless governing equations of NAPL dissolution problems are briefly described, the propagation theory of the mesh discretization error associated with a NAPL dissolution system is first presented for a rectangular domain and then extended to a trapezoidal domain. This leads to the establishment of the finger‐amplitude growing theory that is associated with both the corner effect that takes place just at the entrance of the flow in a trapezoidal domain and the mesh discretization effect that occurs in the whole NAPL dissolution system of the trapezoidal domain. This theory can be used to make the approximate error estimation of the corresponding computational simulation results. The related theoretical analysis and numerical results have demonstrated the following: (1) both the corner effect and the mesh discretization effect can be quantitatively viewed as a kind of small perturbation, which can grow in unstable NAPL dissolution systems, so that they can have some considerable effects on the computational results of such systems; (2) the proposed finger‐amplitude growing theory associated with the corner effect at the entrance of a trapezoidal domain is useful for correctly explaining why the finger at either the top or bottom boundary grows much faster than that within the interior of the trapezoidal domain; (3) the proposed finger‐amplitude growing theory associated with the mesh discretization error in the NAPL dissolution system of a trapezoidal domain can be used for quantitatively assessing the correctness of computational simulations of NAPL dissolution front instability problems in trapezoidal domains, so that we can ensure that the computational simulation results are controlled by the physics of the NAPL dissolution system, rather than by the numerical artifacts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
34.
A finite element formulation is proposed and implemented for analysing the stability of excavated wells using the DiMaggio-Sandler constitutive elastoplastic model with a typical carbonate reservoir configuration. The quality of the finite element approximation is ensured by applying smooth curved elements adapted to the wellbore geometry, and hp adaptive finite element meshes in the plastic zone. General purpose procedures are defined to transfer the elastoplastic deformation history to newly created integration points. A breakout damage criterion is proposed based on the second invariant of the deviatoric plastic deformation tensor. This damage criterion is used to apply a mesh movement algorithm to represent material collapse. The automatic successive application of the breakout damage criterion results in elliptical realistically looking geometries obtained in experiments reported in the literature.  相似文献   
35.
Abstract

Laboratory experiments concerning azimuthal jets in two-layer rotating systems in the absence and presence of bottom topography aligned along the jets have been conducted. The jets were forced by the selective withdrawal of fluid from the upper layer of a two-fluid system contained in a circular dishpan geometry. The principal parameters measured in the experiments were the jet Rossby number, Ro, and a stratification parameter F = r 1/(λ1λ2)1/2 where r 1 is the radius of the circular disc used for the selective withdrawal (i.e., r 1 is the approximate radius of curvature of the jet) and λ12 are the internal Rossby radii of deformation in the upper and lower fluids, respectively.

The no-topography experiments show that for a sufficiently small F, the particular value depending on Ro, the jet is stable for the duration of the experiment. For sufficiently large F, again as a function of Ro, the jet becomes unstable, exhibiting horizontal wave disturbances from modes three to seven. An Ro against F flow regime diagram is presented.

Experiments are then conducted in the presence of a bottom topography having constant cross-section and extending around a mid-radius of the dishpan. The axis of the topography is in the vicinity of the jet axis forced in the no-topography experiments and the crest of the topography is in the vicinity of the interface between the two fluids (i.e., the front associated with the jet). The experiments show that in all cases investigated the jet tends to be stabilized by the bottom topography. Experiments with the topography in place, but with the interface between the fluids being above the topography crest, are shown to be unstable but more irregular than their no-topography counterparts.

Various quantitative measurements of the jet are presented. It is shown, for example, that the jet Rossby number defined in terms of the fluid withdrawal rate from the tank. Q, can be well correlated with a dimensionless vorticity gradient, VG , across the upper layer jet. This allows for an assessment of the stability characteristics of a jet based on a knowledge of VG (which can be estimated given a jet profile) and F.  相似文献   
36.
黑潮延伸体上游中尺度涡场的年代际振荡及其相关机制   总被引:1,自引:1,他引:0  
黑潮延伸体上游区域的中尺度涡场的涡动能和涡特征尺度存在显著地年代际振荡,和黑潮延伸体路径的年代际变化有很好的相关性。当黑潮延伸体路径比较稳定时,其上游区域涡动能比较高,涡特征尺度比较大,反之相反。通过对黑潮延伸体上游区域的中尺度涡场进行集合分析发现:当黑潮延伸体处于稳定状态时,上游涡场几乎是各向均匀地,有轻微的径向伸长;而当黑潮延伸体处于不稳定状态时,上游的中尺度涡场有显著地纬向伸长。对与中尺度涡场的产生相关的线性斜压不稳定和正压不稳定进行了计算分析,结果显示,线性斜压不稳定不是控制中尺度涡场年代际变化的机制,而正压不稳定对中尺度涡场的年代际变化有积极的贡献。不稳定产生的中尺度涡之间存在非线性涡-涡相互作用。  相似文献   
37.
邹广安 《海洋科学》2016,40(2):151-158
日本南部黑潮路径变异对北太平洋地区的气候和环境具有显著的影响,对黑潮路径变异的研究具有重要的意义。本文利用POM(Princeton Ocean Model)数值模式模拟了日本南部黑潮的路径变异情况,分析了黑潮大弯曲路径形成的可能机制。研究结果表明,当黑潮处于非大弯曲路径时,相对位势涡度的平均值呈现递减趋势,说明日本南部低位势涡度水在不断积累,这样会使得四国再循环流的强度增强,迫使黑潮保持平直路径,同时,近岸黑潮垂直流速剪切增大,斜压不稳定性的作用也逐渐增大;当黑潮从非大弯曲路径向大弯曲路径过渡时,再循环流强度的减弱会导致黑潮的流速剪切减小。根据海表高度异常场以及海洋上层流场信息发现,近岸黑潮附近的气旋涡会随着再循环流区域反气旋涡的东侧向南运动,最终导致黑潮大弯曲的发生。分析涡流的能量,结果显示,黑潮大弯曲路径的形成与斜压不稳定性密切相关。  相似文献   
38.
Abstract

This research deals with the surface dynamics and key factors – hydrological regime, sediment load, and erodibility of floodplain facies – of frequent channel shifting, intensive meandering, and lateral instability of the Bhagirathi River in the western part of the Ganga-Brahmaputra Delta (GBD). At present, the floodplain of the Bhagirathi is categorized as a medium energy (specific stream power of 10–300 W m?2), non-cohesive floodplain, which exhibits a mixed-load and a meandering channel, an entrenchment ratio >2.2, width–depth ratio >12, sinuosity >1.4, and channel slope <0.02. In the study area, since 1975, four meander cutoffs have been shaped at an average rate of one in every 9–10 years. In the active meander belt and sand-silt dominated floodplains of GBD, frequent shifting of the channel and meander migration escalate severe bank erosion (e.g. 2.5 × 106 m3 of land lost between 1999 and 2004) throughout the year. Remote sensing based spatio-temporal analysis and stratigraphic analysis reveal that the impact of the Farakka barrage, completed in 1975, is not the sole factor of downstream channel oscillation; rather, hydrogeomorphic instability induced by the Ajay–Mayurakshi fluvial system and the erodibility of floodplain sediments control the channel dynamics of the study area.  相似文献   
39.
皖南地1井是部署在安徽省南陵县烟墩镇的一口页岩气基础地质调查井。文章详细介绍了该井的钻探施工工艺技术以及遇到复杂问题的处理方法,并对钻效进行了分析,提出了实现优质高效钻探的措施。项目的顺利实施,梳理了皖南地区地层层序,为页岩气储层理论推测提供了有力的实物数据支撑和验证。  相似文献   
40.
Predicting the future response of ice sheets to climate warming and rising global sea level is important but difficult. This is especially so when fast-flowing glaciers or ice streams, buffered by ice shelves, are grounded on beds below sea level. What happens when these ice shelves are removed? And how do the ice stream and the surrounding ice sheet respond to the abruptly altered boundary conditions? To address these questions and others we present new geological, geomorphological, geophysical and geochronological data from the ice-stream-dominated NW sector of the last British–Irish Ice Sheet (BIIS). The study area covers around 45 000 km2 of NW Scotland and the surrounding continental shelf. Alongside seabed geomorphological mapping and Quaternary sediment analysis, we use a suite of over 100 new absolute ages (including cosmogenic-nuclide exposure ages, optically stimulated luminescence ages and radiocarbon dates) collected from onshore and offshore, to build a sector-wide ice-sheet reconstruction combining all available evidence with Bayesian chronosequence modelling. Using this information we present a detailed assessment of ice-sheet advance/retreat history, and the glaciological connections between different areas of the NW BIIS sector, at different times during the last glacial cycle. The results show a highly dynamic, partly marine, partly terrestrial, ice-sheet sector undergoing large size variations in response to sub-millennial-scale climatic (Dansgaard–Oeschger) cycles over the last 45 000 years. Superimposed on these trends we identify internally driven instabilities, operating at higher frequency, conditioned by local topographic factors, tidewater dynamics and glaciological feedbacks during deglaciation. Specifically, our new evidence indicates extensive marine-terminating ice-sheet glaciation of the NW BIIS sector during Greenland Stadials 12 to 9 – prior to the main ‘Late Weichselian’ ice-sheet glaciation. After a period of restricted glaciation, in Greenland Interstadials 8 to 6, we find good evidence for rapid renewed ice-sheet build-up in NW Scotland, with the Minch ice-stream terminus reaching the continental shelf edge in Greenland Stadial 5, perhaps only briefly. Deglaciation of the NW sector took place in numerous stages. Several grounding-zone wedges and moraines on the mid- and inner continental shelf attest to significant stabilizations of the ice-sheet grounding line, or ice margin, during overall retreat in Greenland Stadials 3 and 2, and to the development of ice shelves. NW Lewis was the first substantial present-day land area to deglaciate, in the first half of Greenland Stadial 3 at a time of globally reduced sea-level c. 26 kabp , followed by Cape Wrath at c. 24 kabp. The topographic confinement of the Minch straits probably promoted ice-shelf development in early Greenland Stadial 2, providing the ice stream with additional support and buffering it somewhat from external drivers. However, c. 20–19 kabp , as the grounding-line migrated into shoreward deepening water, coinciding with a marked change in marine geology and bed strength, the ice stream became unstable. We find that, once underway, grounding-line retreat proceeded in an uninterrupted fashion with the rapid loss of fronting ice shelves – first in the west, then the east troughs – before eventual glacier stabilization at fjord mouths in NW Scotland by ~17 kabp. Around the same time, ~19–17 kabp , ice-sheet lobes readvanced into the East Minch – possibly a glaciological response to the marine-instability-triggered loss of adjacent ice stream (and/or ice shelf) support in the Minch trough. An independent ice cap on Lewis also experienced margin oscillations during mid-Greenland Stadial 2, with an ice-accumulation centre in West Lewis existing into the latter part of Heinrich Stadial 1. Final ice-sheet deglaciation of NW mainland Scotland was punctuated by at least one other coherent readvance at c. 15.5 kabp , before significant ice-mass losses thereafter. At the glacial termination, c. 14.5 kabp , glaciers fed outwash sediment to now-abandoned coastal deltas in NW mainland Scotland around the time of global Meltwater Pulse 1A. Overall, this work on the BIIS NW sector reconstructs a highly dynamic ice-sheet oscillating in extent and volume for much of the last 45 000 years. Periods of expansive ice-sheet glaciation dominated by ice-streaming were interspersed with periods of much more restricted ice-cap or tidewater/fjordic glaciation. Finally, this work indicates that the role of ice streams in ice-sheet evolution is complex but mechanistically important throughout the lifetime of an ice sheet – with ice streams contributing to the regulation of ice-sheet health but also to the acceleration of ice-sheet demise via marine ice-sheet instabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号