首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15133篇
  免费   2931篇
  国内免费   3298篇
测绘学   686篇
大气科学   1555篇
地球物理   4094篇
地质学   8798篇
海洋学   2664篇
天文学   43篇
综合类   1038篇
自然地理   2484篇
  2024年   130篇
  2023年   295篇
  2022年   476篇
  2021年   709篇
  2020年   676篇
  2019年   747篇
  2018年   625篇
  2017年   676篇
  2016年   643篇
  2015年   734篇
  2014年   934篇
  2013年   1169篇
  2012年   898篇
  2011年   992篇
  2010年   918篇
  2009年   920篇
  2008年   960篇
  2007年   986篇
  2006年   1033篇
  2005年   858篇
  2004年   822篇
  2003年   717篇
  2002年   658篇
  2001年   565篇
  2000年   508篇
  1999年   429篇
  1998年   393篇
  1997年   349篇
  1996年   276篇
  1995年   262篇
  1994年   237篇
  1993年   184篇
  1992年   136篇
  1991年   104篇
  1990年   72篇
  1989年   84篇
  1988年   45篇
  1987年   36篇
  1986年   22篇
  1985年   28篇
  1984年   13篇
  1983年   10篇
  1982年   3篇
  1981年   9篇
  1980年   6篇
  1979年   2篇
  1978年   9篇
  1973年   1篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
M. Robinson  A. Dupeyrat 《水文研究》2005,19(6):1213-1226
This paper presents the first large‐scale British study of the impacts of commercial forest cutting on stream‐flow regimes. The 70% forested headwaters of the River Severn are part of the intensively instrumented long‐term Plynlimon catchment study into the impact of land use on stream flow. The forest area, comprising predominantly Sitka spruce (Picea sitchensis), was planted mainly in the 1930s and 1940s. Harvesting commenced in the mid‐1980s and over the study period about half the forest has been felled. Changes in annual water yield and extreme flows were studied in four nested catchments ranging in area from about 1 to 10 km2 and compared with an adjacent benchmark grassland catchment. As expected from earlier process studies the cutting of the forest increased total annual flows. Less expected was the clear evidence that the felling augmented low flows. This informs a long‐standing debate whether upland forestry increases or reduces baseflows. A particularly notable result was the lack of impact of the harvesting on storm peak flows. This may result from the application of forest management guidelines designed to reduce soil damage and erosion during the harvesting, and indicates that the forest itself has a limited impact on flooding. These findings are timely because British forest expansion peaked in the 30 years following the Second World War, and large areas of these woodlands are now approaching economic maturity and will be harvested in the next two decades. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
962.
Impact studies of catchment management in the developing world rarely include detailed hydrological components. Here, changes in the hydrological response of a 200‐ha catchment in north Ethiopia are investigated. The management included various soil and water conservation measures such as the construction of dry masonry stone bunds and check dams, the abandonment of post‐harvest grazing, and the establishment of woody vegetation. Measurements at the catchment outlet indicated a runoff depth of 5 mm or a runoff coefficient (RC) of 1·6% in the rainy season of 2006. Combined with runoff measurements at plot scale, this allowed calculating the runoff curve number (CN) for various land uses and land management techniques. The pre‐implementation runoff depth was then predicted using the CN values and a ponding adjustment factor, representing the abstraction of runoff induced by the 242 check dams in gullies. Using the 2006 rainfall depths, the runoff depth for the 2000 land management situation was predicted to be 26·5 mm (RC = 8%), in line with current RCs of nearby catchments. Monitoring of the ground water level indicated a rise after catchment management. The yearly rise in water table after the onset of the rains (ΔT) relative to the water surplus (WS) over the same period increased between 2002–2003 (ΔT/WS = 3·4) and 2006 (ΔT/WS >11·1). Emerging wells and irrigation are other indicators for improved water supply in the managed catchment. Cropped fields in the gullies indicate that farmers are less frightened for the destructive effects of flash floods. Due to increased soil water content, the crop growing period is prolonged. It can be concluded that this catchment management has resulted in a higher infiltration rate and a reduction of direct runoff volume by 81% which has had a positive influence on the catchment water balance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
963.
This article presents results from a model study of interannual and decadal variability in the Nordic Seas. Fifty years of simulations were conducted in an initial condition ensemble mode forced with the National Centers for Environmental Prediction (NCEP) reanalysis. We studied two major events in the interannual and interdecadal variability of the Nordic Seas during the past fifty years: the Great Salinity Anomaly in the 1960s and early 1970s and the warming of the Arctic and subarctic oceans in the late 1990s.

Previous studies demonstrated that the Great Salinity Anomaly observed in the subarctic ocean in 1960 was originally generated by intensified sea-ice and freshwater inflow from the Arctic Ocean. Our model results demonstrate that the increase in the transport of fresh and cold waters through Fram Strait in the 1960s was concurrent with a reduction in the meridional water exchange over the Greenland–Scotland Ridge. The resulting imbalance in salinity and heat fluxes through the strait and over the ridge also contributed to the freshening of the water masses of the Nordic Seas and intensified the Great Salinity Anomaly in the Nordic Seas.

The warming of the Atlantic Waters in the Nordic Seas and Arctic Ocean during the past two decades had an important impact on the variability of these two ocean basins. Some previous observational and model studies demonstrated that the warming of the subpolar Atlantic Ocean in the late 1990s and the meridional transport of the Atlantic Water mass (AW) into the Nordic Seas and Arctic Ocean contributed to this process. At the same time, observations show that the warming of the AW in the Nordic Seas started in the 1980s (i.e., earlier than the warming of the subpolar North Atlantic Ocean). Our model results suggest that this process was triggered by an imbalance in the lateral heat fluxes through Fram Strait and over the Greenland–Scotland Ridge. In the late 1980s the AW transport over the Greenland–Scotland Ridge was stronger than normal while the exchange through Fram Strait was close to normal. The related imbalance in the lateral heat fluxes through the strait and over the ridge warmed the Nordic Seas and caused an increase in the temperature of the AW inflow to the Arctic Ocean in the late 1980s (i.e., about a decade earlier than the warming of the source of the AW in the subpolar North Atlantic Ocean). Thus the model results suggest that the imbalance in lateral heat and salinity fluxes through the strait and over the ridge connecting the Nordic Seas to the North Atlantic and Arctic oceans could amplify the interannual variability in the subarctic ocean.

[Traduit par la rédaction] Cet article présente les résultats d'une étude par modèle de la variabilité interannuelle et décennale dans les mers nordiques. Nous avons effectué des simulations sur une période de cinquante ans en mode d'ensemble de conditions initiales forcé avec les réanalyses des NCEP (National Centers for Environmental Prediction). Nous avons étudié deux événements majeurs survenus dans la variabilité interannuelle et décennale des mers nordiques au cours des cinquante dernières années : la grande anomalie de salinité des années 1960 et du début des années 1970 et le réchauffement des océans Arctique et subarctique vers la fin des années 1990.

Des études précédentes ont démontrées que la grande anomalie de salinité observée dans l'océan subarctique en 1960 a été causée par une intensification de l'apport de glace de mer et d'eau douce depuis l'océan Arctique. Les résultats que nous avons obtenus du modèle montrent que l'accroissement du transport d'eau douce et froide à travers le détroit de Fram dans les années 1960 s'est produit en même temps qu'une réduction dans l’échange méridien d'eau au-dessus de la crête Groenland–Écosse. Le déséquilibre résultant dans les flux de salinité et de chaleur à travers le détroit et au-dessus de la crête a aussi contribué à l'adoucissement des masses d'eau des mers nordiques et a intensifié la grande anomalie de salinité dans les mers nordiques.

Le réchauffement des eaux atlantiques dans les mers nordiques et dans l'océan Arctique au cours des deux dernières décennies a eu un impact important sur la variabilité de ces deux bassins océaniques. Des études observationnelles et par modèle précédentes ont établi que le réchauffement de l'océan Atlantique subpolaire dans les années 1990 et le transport méridien de la masse d'eau atlantique dans les mers nordiques et dans l'océan Arctique ont contribué à ce processus. En même temps, les observations montrent que le réchauffement des eaux atlantiques dans les mers nordiques a commencé dans les années 1980 (c.–à–d. plus tôt que le réchauffement de l'océan Nord-Atlantique subpolaire). Les résultats du modèle suggèrent que ce processus a été déclenché par un déséquilibre dans les flux de chaleur latéraux à travers le détroit de Fram et au-dessus de la crête Groenland–Écosse. À la fin des années 1980, le transport des eaux atlantiques au-dessus de la crête Groenland–Écosse était plus fort que la normale alors que l’échange à travers le détroit de Fram était près de la normale. Le déséquilibre résultant dans les flux de chaleur latéraux à travers le détroit et au-dessus de la crête a réchauffé les mers nordiques et causé une augmentation de la température des eaux atlantiques parvenant à l'océan Arctique à la fin des années 1980 (c.-à-d. environ une décennie avant le réchauffement de la source d'eaux atlantiques dans l'océan Nord-Atlantique subpolaire). Donc, les résultats du modèle suggèrent que le déséquilibre dans les flux de chaleur et de salinité latéraux à travers le détroit et au-dessus de la crête reliant les mers nordiques à l'Atlantique Nord et à l'Arctique pourrait amplifier la variabilité interannuelle dans l'océan subarctique.  相似文献   
964.
Dehydration (vapour absent) partial melting reactions in the Earth's crust produce a hydrous granitic melt phase, new anhydrous minerals that are mostly pyroxenes, and new plagioclase more calcic than the initial plagioclase. These solid phases of the melt reaction are restite. If the restite is carried to high levels in the crust as a component of the magma, cooling and crystallisation to granite will result in back reactions in which the H2O in the melt phase is consumed and is not then available to form a hydrothermal solution. Even in magmas in which some restite has been removed there will be some back reaction and again less H2O. Only fractional crystallisation will enrich the H2O in the magma in sufficient amounts to form a substantial quantity of hydrothermal solution and possible mineralisation.  相似文献   
965.
Opencast mining alters surface and subsurface hydrology of a landscape both during and post‐mining. At mine closure, following opencast mining in mines with low overburden to coal ratios, a void is left in the final landform. This final void is the location of the active mine pit at closure. Voids are generally not infilled within the mines' lifetime, because of the prohibitive cost of earthwork operations, and they become post‐mining water bodies or pit lakes. Water quality is a significant issue for pit lakes. Groundwater within coal seams and associated rocks can be saline, depending on the nature of the strata and groundwater circulation patterns. This groundwater may be preferentially drawn to and collected in the final void. Surface runoff to the void will not only collect salts from rainfall and atmospheric fallout, but also from the ground surface and the weathering of fresh rock. As the void water level rises, its evaporative surface area increases, concentrating salts that are held in solution. This paper presents a study of the long term, water quality trends in a post‐mining final void in the Hunter Valley, New South Wales, Australia. This process is complex and occurs long term, and modelling offers the only method of evaluating water quality. Using available geochemical, climate and hydrogeological data as inputs into a mass‐balance model, water quality in the final void was found to increase rapidly in salinity through time (2452 to 8909 mg l−1 over 500 years) as evaporation concentrates the salt in the void and regional groundwater containing high loads of salt continues to flow into the void. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
966.
The Powder River Basin (PRB) of Wyoming and Montana contains significant coal and coal bed natural gas (CBNG) resources. CBNG extraction requires the production of large volumes of water, much of which is discharged into existing drainages. Compared to surface waters, the CBNG produced water is high in sodium relative to calcium and magnesium, elevating the sodium adsorption ratio (SAR). To mitigate the possible impact this produced water may have on the quality of surface water used for irrigation, the State of Montana passed water anti‐degradation legislation, which could affect CBNG production in Wyoming. In this study, we sought to determine the proportion of CBNG produced water discharged to tributaries that reaches the Powder River by implementing a four end‐member mixing model within a Bayesian statistical framework. The model accounts for the 87Sr/86Sr, δ13CDIC, [Sr] and [DIC] of CBNG produced water and surface water interacting with the three primary lithologies exposed in the PRB. The model estimates the relative contribution of the end members to the river water, while incorporating uncertainty associated with measurement and process error. Model results confirm that both of the tributaries associated with high CBNG activity are mostly composed of CBNG produced water (70–100%). The model indicates that up to 50% of the Powder River is composed of CBNG produced water downstream from the CBNG tributaries, decreasing with distance by dilution from non‐CBNG impacted tributaries from the point sources to ~10–20% at the Montana border. This amount of CBNG produced water does not significantly affect the SAR or electrical conductivity of the Powder River in Montana. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
967.
Urban expansion and the scarcity of water supplies in arid and semiarid regions have increased the importance of urban runoff to localized water resources. However, urban catchment responses to precipitation are poorly understood in semiarid regions where intense rainfall often results in large runoff events during the short summer monsoon season. To evaluate how urban runoff quantity and quality respond to rainfall magnitude and timing, we collected stream stage data and runoff samples throughout the 2007 and 2008 summer monsoons from four ephemeral drainages in Tucson, Arizona. Antecedent rainfall explained 20% to 30% of discharge (mm) and runoff ratio in the least impervious (22%) catchment but was not statistically related to hydrologic responses at more impervious sites. Regression models indicated that rainfall depth, imperviousness and their combined effect control discharge and runoff ratios (p < 0.01, r2 = 0.91 and 0.75, respectively). In contrast, runoff quality did not vary with imperviousness or catchment size. Rainfall depth and duration, time since antecedent rainfall and event and cumulative discharge controlled runoff hydrochemistry and resulted in five specific solute response patterns: (i) strong event and seasonal solute mobilization (solute flush), (ii) event chemostasis and strong seasonal flush, (iii) event chemostasis and weak seasonal flush, (iv) event and seasonal chemostasis and (v) late seasonal flush. Our results indicate that hydrologic responses of semiarid catchments are controlled by rainfall partitioning at the event scale, whereas wetting magnitude, frequency and timing alter solute stores readily available for transport and control temporal runoff quality. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
968.
Asim Biswas  Bing Cheng Si 《水文研究》2012,26(24):3669-3677
There are various factors governing the spatial and temporal variability of soil water storage including soil properties, topography and vegetation. Some factors act locally, whereas others act nonlocally, which means that a factor measured at one location has effect on soil water storage at another location. The objective of this study was to examine the effects of local and nonlocal controls of soil water storage in a hummocky landscape using cyclical correlation analysis. Soil water storage, soil properties and terrain indices were measured along a 128‐point transect of 576 m long from the semiarid, hummocky, prairie pothole region of North America. There are large coefficients of determination (r2) between soil water storage and sand content (r2 = 0.32–0.53), organic carbon content (r2 = 0.22–0.56), depth to carbonate layer (r2 = 0.13–0.63), wetness index (r2 = 0.25–0.45) and other variables at the measurement scale at different times, indicating strong local effects from these variables. The correlation coefficients were also calculated by physically shifting the spatial series of soil water storage with respect to that of controlling factors. The shifting improves the correlation between the spatial series, and the length of shifting indicated the difference in the response of soil water to its controlling factors. For example, the value of r2 increased more than eightfold (r2 = 0.47–0.64) after shifting the spatial series of soil water storage by 54 m, almost equal to the average length of existing slope, compared with the very weak correlation (r2 = 0.02–0.08) at the measurement scale. This indicated the nonlocal effect from the relative elevation. The identification of nonlocal effects from factors improves the prediction of soil water storage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
969.
There are several methods for determining the spatial distribution and magnitude of groundwater inputs to streams. We compared the results of conventional methods [dye dilution gauging, acoustic Doppler velocimeter (ADV) differential gauging, and geochemical end‐member mixing] to distributed temperature sensing (DTS) using a fibre‐optic cable installed along 900 m of Ninemile Creek in Syracuse, New York, USA, during low‐flow conditions (discharge of 1·4 m3 s?1). With the exception of differential gauging, all methods identified a focused, contaminated groundwater inflow and produced similar groundwater discharge estimates for that point, with a mean of 66·8 l s?1 between all methods although the precision of these estimates varied. ADV discharge measurement accuracy was reduced by non‐ideal conditions and failed to identify, much less quantify, the modest groundwater input, which was only 5% of total stream flow. These results indicate ambient tracers, such as heat and geochemical mixing, can yield spatially and quantitatively refined estimates of relatively modest groundwater inflow even in large rivers. DTS heat tracing, in particular, provided the finest spatial characterization of groundwater inflow, and may be more universally applicable than geochemical methods, for which a distinct and consistent groundwater end member may be more difficult to identify. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
970.
Abstract

Knowledge of the hydrochemical dynamics of the trace metal manganese (Mn) in upland catchments is required for water quality management. Stream water Mn and other solutes and flow were monitored in two upland catchments in northern England with different soils: one dominated by peat (HS7), the other by mineral soils (HS4). Maximum Mn concentrations occurred at different times in the two catchments: in summer baseflow at HS4 and during late summer storm events at HS7. A two-component chemical mixing model was used to identify the hydrological processes controlling Mn concentrations in stream water. This approach was more successful for HS4 than HS7, probably because of different processes of Mn release in the two catchments and also difficulties in selecting conservative solutes. Factor analysis of the stream water chemistry data set for each catchment was more useful in identifying the controls on Mn release into runoff. The factors indicate that the main source of Mn at HS4 is the hydrological pathway supplying summer baseflow, whereas at HS7 Mn is released during the rewetting of dried peat soils. Manganese concentrations in stream water in upland catchments appear to depend on soil type and antecedent moisture conditions. This has implications for the design of sampling strategies in upland catchments and also for managing the quality of water supplies from such areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号