首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5284篇
  免费   865篇
  国内免费   976篇
测绘学   269篇
大气科学   539篇
地球物理   1176篇
地质学   3767篇
海洋学   516篇
天文学   37篇
综合类   290篇
自然地理   531篇
  2024年   10篇
  2023年   54篇
  2022年   118篇
  2021年   151篇
  2020年   201篇
  2019年   205篇
  2018年   166篇
  2017年   207篇
  2016年   197篇
  2015年   217篇
  2014年   268篇
  2013年   334篇
  2012年   291篇
  2011年   340篇
  2010年   242篇
  2009年   378篇
  2008年   381篇
  2007年   355篇
  2006年   359篇
  2005年   284篇
  2004年   267篇
  2003年   227篇
  2002年   202篇
  2001年   215篇
  2000年   235篇
  1999年   214篇
  1998年   152篇
  1997年   180篇
  1996年   148篇
  1995年   111篇
  1994年   87篇
  1993年   75篇
  1992年   59篇
  1991年   40篇
  1990年   31篇
  1989年   29篇
  1988年   17篇
  1987年   16篇
  1986年   9篇
  1985年   7篇
  1984年   6篇
  1983年   3篇
  1980年   6篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1973年   4篇
  1972年   5篇
  1971年   5篇
排序方式: 共有7125条查询结果,搜索用时 15 毫秒
161.
Differential GPS (DGPS) and Differential Interferometric Synthetic Aperture Radar (DInSAR) analyses were applied to the Kos-Yali-Nisyros Volcanic Field (SE Hellenic Volcanic Arc) to quantify the ground deformation of Nisyros Volcano. After intense seismic activity in 1996, a GPS network was installed in June 1997 and re-occupied annually up to 2002. A general uplift ranging from 14 to 140 mm was determined at all stations of the network. The corresponding horizontal displacements ranged from 13 to 53 mm. The displacement vectors indicate that the island is undergoing extension towards the East, West and South. A two-source “Mogi” model combined with assumed motion along the Mandraki Fault was constructed to fit the observed deformation. The best-fit model assumes sources at a depth of 5500 m NW of the centre of the island and at 6500 m offshore ESE of Yali Island. DInSAR analysis using four pairs of images taken between May 1995 and September 2000 suggests that deformation was occurring during 1995 before the start of the seismic crisis. An amplitude of at least 56 mm along the slant range appeared for the period 1996 through 1999. This deformation is consistent with the two-source model invoked in DGPS modelling. Surface evidence of ground deformation is expressed in the contemporaneous reactivation of the Mandraki Fault. In addition, a 600 m long N-S trending irregular rupture in the caldera floor was formed between 2001 and 2002. This rupture is interpreted as the release of surface stress in the consolidated epiclastic and hydrothermal sediments of the caldera floor.  相似文献   
162.
Based on the inversion method of 2D velocity structure and interface, the crustal velocity structures of P-wave and S-wave along the profile L 1 are determined simultaneously with deep seismic sounding data in Changbaishan Tianchi volcanic region, and then its Poisson’s ratio is obtained. Calculated results show that this technique overcomes some defects of traditional forward calculation method, and it is also very effective to determine Poisson’s ratio distribution of deep seismic sounding profile, especially useful for study on volcanic magma and crustal fault zone. Study result indicates that there is an abnormally high Poisson’s ratio body that is about 30 km wide and 12 km high in the low velocity region under Tianchi crater. Its value of Poisson’s ratio is 8% higher than that of surrounding medium and it should be the magma chamber formed from melted rock with high temperature. There is a high Poisson’s ratio zone ranging from magma chamber to the top of crust, which may be the uprise passage of hot substance. The lower part with high Poisson’s ratio, which stretches downward to Moho, is possibly the extrusion way of hot substance from the uppermost mantle. The conclusions above are consistent with the study results of both tomographic determination of 3D crustal structure and magnetotelluric survey in this region. Foundation item: Key Project from China Earthquake Administration and the Project (95-11-02-01) from Ministry of Science and Technology (2001DIA10003). Contribution No. RCEG200401, Geophysical Exploration Center, China Earthquake Administration.  相似文献   
163.
Karthala volcano is a basaltic shield volcano with an active hydrothermal system that forms the southern two-thirds of the Grande Comore Island, off the east coat of Africa, northwest of Madagascar. Since the start of volcano monitoring by the local volcano observatory in 1988, the July 11th, 1991 phreatic eruption was the first volcanic event seismically recorded on this volcano, and a rare example of a monitored basaltic shield. From 1991 to 1995 the VT locations, 0.5<Ml<4.3, show a crack shaped pattern (3 km long, 1 km wide) within the summit caldera extending at depth from –2 km to +2 km relative to sea level. This N-S elongated pattern coincides with the direction of the regional maximum horizontal stress as deduced from regional focal mechanism solutions. This brittle signature of the damage associated with the 1991 phreatic eruption is a typical pattern of the seismicity induced by controlled fluid injections such as those applied at geothermal fields, in oil and gas recovery, or for stress measurements. It suggests the 1991 phreatic eruption was driven by hydraulic fracturing induced by forced fluid flow. We propose that the extremely high LP and VT seismicity rates, relative to other effusive volcanoes, during the climax of the 1991 phreatic explosion, are due to the activation of the whole hydrothermal system, as roughly sized by the distribution of VT hypocenters. The seismicity rate in 1995 was still higher than the pre-eruption seismicity rate, and disagrees with the time pattern of thermo-elastic stress readjustment induced by single magma intrusions at basaltic volcanoes. We propose that it corresponds to the still ongoing relaxation of pressure heterogeneity within the hydrothermal system as suggested by the few LP events that still occurred in 1995.Editorial responsibility: H Shinohara  相似文献   
164.
The spatial/temporal variation information of atmospheric dynamic-chemical processes at observation site points of the "canopy" boundary of Beijing urban building ensemble and over urban area "surface", as well as the seasonal correlation structure of the gaseous and particulate states of urban atmospheric pollution (UAP) and its seasonal conversion feature at observation points are investigated, using the comprehensive observation data of the Beijing City Air Pollution Observation Experiment (BECAPEX) in winter and summer 2003 with a "point-surface" combined research approach. By using "one dimension spatial empirical orthogonal function (EOF)" principal component analysis (PCA) mode, the seasonal change of gaseous and particulate states of atmospheric aerosols and the association feature of pollutant species under the background of the complicated structure of urban boundary layer (UBL) are analyzed. The comprehensive analyses of the principal components of particle concentrations,gaseous pollutant species, and meteorological conditions reveal the seasonal changes of the complex constituent and structure features of the gaseous and particulate states of UAP to further trace the impact feature of urban aerosol pollution surface sources and the seasonal difference of the component structure of UAP. Research results suggest that in the temporal evolution of the gaseous and particulate states of winter/summer UAP, NOx, CO, and SO2 showed an "in-phase" evolution feature, however, O3 showed an "inverse-phase" relation with other species,all possessing distinctive dependent feature. On the whole, summer concentrations of gaseous pollutants CO, SO2, and NOx were obviously lower than winter ones, especially, the reduction in CO concentration was most distinctive, and ones in SO2 and NOx were next. However, the summer O3 concentration was more than twice winter one. Winter/summer differences in PM10and PM2.5 particle concentrations were relatively not obvious, which indicates that responses of PM10 and PM2.5 particle concentrations to the difference of winter/summer heating period emission sources are far less distinctive than those of NOx, SO2, and CO. The correlation feature of winter/summer gaseous and particulate states depicts that both PM10 and PM2.5 particles were significantly correlated with NOx, and their correlations with NOx are more significant than those with other pollutants. Through PCA, it is found that there was a distinctive difference in the principal component combination structure of winter/summer PM10 and PM2.5 particles: SO2 and NOx dominated in the principal component of winter PM10 and PM2.5 particles; while CO and NOx played the major role in the principal component of summer PM10 and PM2.5 particles. For winter/summer PM10 and PM2.5 particles, there might exist the gaseous and particulate states correlation structures of different "combinations" of such dependent pollutant species. Research results also uncover that the interaction processes of gaseous and particulate states were also related with the vertical structure of UBL, that is to say, the low value layer of UBL O3 concentration was associated with the collocation of atmospheric vertical structures of the low level inversion,inverse humidity, and small wind, which depicts summer boundary layer atmospheric character, i.e.the compound impact of the dependent factor "combination" of wind, temperature, and humidity elements and their collocation structure on the variations of different gaseous pollutant concentrations. Such a depth structure of the extremely low value of O3 concentration in the UBL accords with its "inverse-phase" relation with other gaseous pollutant species. The PCA of meteorological factors associated with PM10 and PM2.5 concentrations also reveals the sensitivity of PM10 and PM2.5 concentration to the combinatory feature of local meteorological conditions.  相似文献   
165.
Caldera formation has been explained by magma withdrawal from a crustal reservoir, but little is known about the conditions that lead to the critical reservoir pressure for collapse. During an eruption, the reservoir pressure is constrained to lie within a finite range: it cannot exceed the threshold value for eruption, and cannot decrease below another threshold value such that feeder dykes get shut by the confining pressure, which stops the eruption. For caldera collapse to occur, the critical reservoir pressure for roof failure must therefore be within this operating range. We use an analytical elastic model to evaluate the changes of reservoir pressure that are required for failure of roof rocks above the reservoir with and without a volcanic edifice at Earth's surface. With no edifice at Earth's surface, faulting in the roof region can only occur in the initial phase of reservoir inflation and affects a very small part of the focal area. Such conditions do not allow caldera collapse. With a volcanic edifice, large tensile stresses develop in the roof region, whose magnitude increase as the reservoir deflates during an eruption. The edifice size must exceed a threshold value for failure of the roof region before the end of eruption. The largest tensile stresses are reached at Earth's surface, indicating that faulting starts there. Failure affects an area whose horizontal dimensions depend on edifice and chamber dimensions. For small and deep reservoirs, failure conditions cannot be achieved even if the edifice is very large. Quantitative predictions are consistent with observations on a number of volcanoes.  相似文献   
166.
The identification of marine source rocks in the Tarim Basin is debated vigorously. The intention of this paper is to investigate the asphahenes in heavy oils from the Lunnan and Tabe oilfields and Well TD2 with ruthenium-ions-catalyzed oxidation technique (RICO), in order to explore its role in oil-oil and oil-source correlations, The RICO products included n-alkanoic acids, α,ω-di-n-alkanoic acids, branched alkanoic acids, tricyclic terpanoic acids, hopanoic acids, gammacerane carboxylic acid , regular sterane carboxylic acids and 4-methylsterane carboxylic acids. The n-alkyl chains and biomarkers bounded on the asphaltenes were of unsusceptibility to biodegradation. The distribution and absolute concentrations of n-alkanoic acids in the RICO products of heavy oils from the Lunnan and Tabe oilfields are different from those of Well TD2. The biomarkers bounded on the asphahenes, especially steranes, have a distribution trend similar to that of the counterparts in saturates. The sterane carboxylic acids and 4-methylsterane carboxylic acids in the RICO products of heavy oils from the Lunnan and Tahe oilfields, dominated by C30 sterane and C31 4-methylsterane carboxylic acids, respectively, are significantly different from those of the heavy oils of Well TD2, whose dominating sterane and 4-methylsterane carboxylic acids are C28 sterane and C29 4-methylsterane acids, respectively. The RICO products of the asphaltenes further indicate that the Middle-Upper Ordovician may be the main source rocks for heavy oils from the Lunnan and Tabe oilfields.  相似文献   
167.
Based on the analysis of newly collected data of plate tectonics, distribution of active faults and crustal deformation, the Taiwan area is divided into two seismic regions and six seismic belts. Then, correlation fractal dimensions of all the regions and belts are calculated, and the fractal characteristics of hypocenteral distribution can be quantitatively analyzed. Finally, multifractal dimensions Dq and f(α) are calculated by using the earthquake catalog of the past 11 years in the Taiwan area. This study indicates that (1) there exists a favorable corresponding relationship between spatial images of seismic activity described with correlation fractal dimension analysis and tectonic settings; (2) the temporal structure of earthquakes is not single but multifractal fractal, and the pattern of Dq variation with time is a good indicator for predicting strong earthquake events.  相似文献   
168.
Tectono-stratigraphic analysis of the East Tanka fault zone (ETFZ), Suez Rift, indicates that the evolution of normal fault segments was an important control on syn-rift depositional patterns and sequence stratigraphy. Sedimentological and stratigraphic analysis of the Nukhul Formation indicates that it was deposited in a narrow (ca 1–2 km), elongate (ca 5 km), fault-bounded, tidally influenced embayment during the low subsidence rift-initiation phase. The Nukhul Formation is composed of transgressive (TST) and highstand (HST) systems tract couplets interpreted as reflecting fault-driven subsidence and the continuous creation of accommodation in the hangingwall to the ETFZ. The overlying Lower Rudeis Formation was deposited during the high subsidence rift-climax phase, and is composed of forced regressive systems tract (FRST) shallow marine sandbodies, and TST to HST offshore mudstones. Activity on the ETFZ led to marked spatial variability in stratal stacking patterns, systems tracts and key stratal surfaces, as footwall uplift, coupled with regressive marine erosion during deposition of FRST sandbodies, led to the removal of intervening TST–HST mudstone-dominated units, and the amalgamation of FRST sandbodies and the stratal surfaces bounding these units in the footwall. This study indicates that the evolution of normal fault segments over relatively short (i.e. <1 km) length-scales has the potential to enhance or suppress a eustatic sea-level signal, leading to marked spatial variations in stratal stacking patterns, systems tracts and key stratal surfaces. Crucially, these variations in sequence stratigraphic evolution may occur within time-equivalent stratal units, thus caution must be exercised when attempting to correlate syn-rift depositional units based solely on stratal stacking patterns. Furthermore, local, tectonically controlled variations in relative sea level can give rise to syn-rift stacking patterns which are counterintuitive in the context of the structural setting and perceived regional subsidence rates.  相似文献   
169.
This study investigates the controls on three-dimensional stratigraphic geometries and facies of shallow-water carbonate depositional sequences. A 15 km2 area of well-exposed Mid to Late Miocene carbonates on the margin of the Níjar Basin of SE Spain was mapped in detail. An attached carbonate platform and atoll developed from a steeply sloping basin margin over a basal topographic unconformity and an offshore dacite dome (Late Miocene). The older strata comprise prograding bioclastic (mollusc and coralline algae) dominated sediments and later Messinian Porites reefs form prograding and downstepping geometries (falling stage systems tract). Seven depositional sequences, their systems tracts and facies have been mapped and dated (using Sr isotopes) to define their morphology, stratigraphic geometries, and palaeo-environments. A relative sea-level curve and isochore maps were constructed for the three Messinian depositional sequences that precede the late Messinian evaporative drawdown of the Mediterranean. The main 3D controls on these depositional sequences are interpreted as being: (i) local, tectonically driven relative sea-level changes; (ii) the morphology of the underlying sequence boundary; (iii) the type of carbonate producers [bioclastic coralline algal and mollusc-dominated sequences accumulated in lows and on slopes of < 14° whereas the Porites reef-dominated sequence accumulated on steep slopes (up to 25°) and shallow-water highs]. Further controls were: (iv) the inherited palaeo-valleys and point-sourced clastics; (v) the amount of clastic sediments; and (vi) erosion during the following sequence boundary development. The stratigraphy is compared with that of adjacent Miocene basins in the western Mediterranean to differentiate local (tectonics, clastic supply, erosion history, carbonate-producing communities) versus regional (climatic, tectonic, palaeogeographic, sea-level) controls.  相似文献   
170.
During the Late Palaeozoic and the Mesozoic, the development and evolution of the North West Shelf of Australia have been mostly driven by rifting phases associated with the break-up of Gondwana. These extensional episodes, which culminated in the opening of the Neotethys Ocean during the Permo-Carboniferous and a series of abyssal plains during the Jurassic-Cretaceous, are characterised by different stress regimes and modes of extension, and therefore had distinctive effects on the margin, and particularly on the Northern Carnarvon Basin.Interpretation of 3D and 2D seismic data enables a structural and stratigraphic analysis of the Late Palaeozoic sediments deposited in the proximal part of the Dampier Sub-basin (Mermaid Nose). Based on their seismic characters, stratigraphic relationship, internal patterns, lateral continuity, and architecture, these units are associated here with the Pennsylvanian?–Early Sakmarian glaciogenic Lyons Group and the Sakmarian–Artinskian Callytharra Formation. The former were deposited in a half-graben whose development is associated with the onset of the Neotethys rifting, and the latter is characterised by restricted deposition, inversion of prograding patterns, and uplift.The integration of seismo-stratigraphic characterisation of the Late Palaeozoic sequences and Mesozoic data from one exploration well (Roebuck-1) enables the construction of subsidence curves for the Mermaid Nose and the interpretation of its geohistory.The tectonic subsidence curves show a striking Permo-Carboniferous rifting phase related to the Neotethys rifting and a discrete Late Jurassic–Early Cretaceous event coeval with the opening and the spreading of the Argo Abyssal Plain.This result points out the predominance of the effects of the Permo-Carboniferous Neotethys episode, whereas the extension related to the Argo Abyssal Plain rifting that occurred later and closer to the studied area, had only limited effects on the subsidence of the proximal Dampier Sub-basin. Therefore, it supports a tectonic model with two distinct modes of extension for the Late Palaeozoic (widespread) and the Mesozoic (localised) rifting phases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号