首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2062篇
  免费   340篇
  国内免费   720篇
测绘学   50篇
大气科学   15篇
地球物理   717篇
地质学   2007篇
海洋学   143篇
天文学   36篇
综合类   60篇
自然地理   94篇
  2024年   16篇
  2023年   40篇
  2022年   84篇
  2021年   80篇
  2020年   115篇
  2019年   95篇
  2018年   84篇
  2017年   101篇
  2016年   82篇
  2015年   77篇
  2014年   115篇
  2013年   116篇
  2012年   119篇
  2011年   90篇
  2010年   73篇
  2009年   165篇
  2008年   193篇
  2007年   134篇
  2006年   158篇
  2005年   116篇
  2004年   124篇
  2003年   112篇
  2002年   98篇
  2001年   72篇
  2000年   110篇
  1999年   91篇
  1998年   93篇
  1997年   73篇
  1996年   61篇
  1995年   53篇
  1994年   44篇
  1993年   35篇
  1992年   27篇
  1991年   15篇
  1990年   15篇
  1989年   16篇
  1988年   12篇
  1987年   8篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有3122条查询结果,搜索用时 15 毫秒
81.
Differential GPS (DGPS) and Differential Interferometric Synthetic Aperture Radar (DInSAR) analyses were applied to the Kos-Yali-Nisyros Volcanic Field (SE Hellenic Volcanic Arc) to quantify the ground deformation of Nisyros Volcano. After intense seismic activity in 1996, a GPS network was installed in June 1997 and re-occupied annually up to 2002. A general uplift ranging from 14 to 140 mm was determined at all stations of the network. The corresponding horizontal displacements ranged from 13 to 53 mm. The displacement vectors indicate that the island is undergoing extension towards the East, West and South. A two-source “Mogi” model combined with assumed motion along the Mandraki Fault was constructed to fit the observed deformation. The best-fit model assumes sources at a depth of 5500 m NW of the centre of the island and at 6500 m offshore ESE of Yali Island. DInSAR analysis using four pairs of images taken between May 1995 and September 2000 suggests that deformation was occurring during 1995 before the start of the seismic crisis. An amplitude of at least 56 mm along the slant range appeared for the period 1996 through 1999. This deformation is consistent with the two-source model invoked in DGPS modelling. Surface evidence of ground deformation is expressed in the contemporaneous reactivation of the Mandraki Fault. In addition, a 600 m long N-S trending irregular rupture in the caldera floor was formed between 2001 and 2002. This rupture is interpreted as the release of surface stress in the consolidated epiclastic and hydrothermal sediments of the caldera floor.  相似文献   
82.
Based on the inversion method of 2D velocity structure and interface, the crustal velocity structures of P-wave and S-wave along the profile L 1 are determined simultaneously with deep seismic sounding data in Changbaishan Tianchi volcanic region, and then its Poisson’s ratio is obtained. Calculated results show that this technique overcomes some defects of traditional forward calculation method, and it is also very effective to determine Poisson’s ratio distribution of deep seismic sounding profile, especially useful for study on volcanic magma and crustal fault zone. Study result indicates that there is an abnormally high Poisson’s ratio body that is about 30 km wide and 12 km high in the low velocity region under Tianchi crater. Its value of Poisson’s ratio is 8% higher than that of surrounding medium and it should be the magma chamber formed from melted rock with high temperature. There is a high Poisson’s ratio zone ranging from magma chamber to the top of crust, which may be the uprise passage of hot substance. The lower part with high Poisson’s ratio, which stretches downward to Moho, is possibly the extrusion way of hot substance from the uppermost mantle. The conclusions above are consistent with the study results of both tomographic determination of 3D crustal structure and magnetotelluric survey in this region. Foundation item: Key Project from China Earthquake Administration and the Project (95-11-02-01) from Ministry of Science and Technology (2001DIA10003). Contribution No. RCEG200401, Geophysical Exploration Center, China Earthquake Administration.  相似文献   
83.
Karthala volcano is a basaltic shield volcano with an active hydrothermal system that forms the southern two-thirds of the Grande Comore Island, off the east coat of Africa, northwest of Madagascar. Since the start of volcano monitoring by the local volcano observatory in 1988, the July 11th, 1991 phreatic eruption was the first volcanic event seismically recorded on this volcano, and a rare example of a monitored basaltic shield. From 1991 to 1995 the VT locations, 0.5<Ml<4.3, show a crack shaped pattern (3 km long, 1 km wide) within the summit caldera extending at depth from –2 km to +2 km relative to sea level. This N-S elongated pattern coincides with the direction of the regional maximum horizontal stress as deduced from regional focal mechanism solutions. This brittle signature of the damage associated with the 1991 phreatic eruption is a typical pattern of the seismicity induced by controlled fluid injections such as those applied at geothermal fields, in oil and gas recovery, or for stress measurements. It suggests the 1991 phreatic eruption was driven by hydraulic fracturing induced by forced fluid flow. We propose that the extremely high LP and VT seismicity rates, relative to other effusive volcanoes, during the climax of the 1991 phreatic explosion, are due to the activation of the whole hydrothermal system, as roughly sized by the distribution of VT hypocenters. The seismicity rate in 1995 was still higher than the pre-eruption seismicity rate, and disagrees with the time pattern of thermo-elastic stress readjustment induced by single magma intrusions at basaltic volcanoes. We propose that it corresponds to the still ongoing relaxation of pressure heterogeneity within the hydrothermal system as suggested by the few LP events that still occurred in 1995.Editorial responsibility: H Shinohara  相似文献   
84.
Caldera formation has been explained by magma withdrawal from a crustal reservoir, but little is known about the conditions that lead to the critical reservoir pressure for collapse. During an eruption, the reservoir pressure is constrained to lie within a finite range: it cannot exceed the threshold value for eruption, and cannot decrease below another threshold value such that feeder dykes get shut by the confining pressure, which stops the eruption. For caldera collapse to occur, the critical reservoir pressure for roof failure must therefore be within this operating range. We use an analytical elastic model to evaluate the changes of reservoir pressure that are required for failure of roof rocks above the reservoir with and without a volcanic edifice at Earth's surface. With no edifice at Earth's surface, faulting in the roof region can only occur in the initial phase of reservoir inflation and affects a very small part of the focal area. Such conditions do not allow caldera collapse. With a volcanic edifice, large tensile stresses develop in the roof region, whose magnitude increase as the reservoir deflates during an eruption. The edifice size must exceed a threshold value for failure of the roof region before the end of eruption. The largest tensile stresses are reached at Earth's surface, indicating that faulting starts there. Failure affects an area whose horizontal dimensions depend on edifice and chamber dimensions. For small and deep reservoirs, failure conditions cannot be achieved even if the edifice is very large. Quantitative predictions are consistent with observations on a number of volcanoes.  相似文献   
85.
Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision,especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrnsting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.  相似文献   
86.
Seismic tomography studies in the northeastern Japan arc have revealed the existence of an inclined sheet-like seismic low-velocity and high-attenuation zone in the mantle wedge at depths shallower than about 150 km. This sheet-like low-velocity, high-attenuation zone is oriented sub-parallel to the subducted slab, and is considered to correspond to the upwelling flow portion of the subduction-induced convection. The low-velocity, high-attenuation zone reaches the Moho immediately beneath the volcanic front (or the Ou Backbone Range) running through the middle of the arc nearly parallel to the trench axis, which suggests that the volcanic front is formed by this hot upwelling flow. Aqueous fluids supplied by the subducted slab are probably transported upward through this upwelling flow to reach shallow levels beneath the Backbone Range where they are expelled from solidified magma and migrate further upward. The existence of aqueous fluids may weaken the surrounding crustal rocks, resulting in local contractive deformation and uplift along the Backbone Range under the compressional stress field of the volcanic arc. A strain-rate distribution map generated from GPS data reveals a notable concentration of east–west contraction along the Backbone Range, consistent with this interpretation. Shallow inland earthquakes are also concentrated in the upper crust of this locally large contraction deformation zone. Based on these observations, a simple model is proposed to explain the deformation pattern of the crust and the characteristic shallow seismic activity beneath the northeastern Japan arc.  相似文献   
87.
采用Sm-Nd同位素定年方法,测得江苏北部新沂地区踢球山榴辉岩岩体时代为221.6±8.4 Ma,Sm-Nd年龄被看作为踢球山超高压变质之后板块折返过程中的高压榴辉岩相重结晶阶段年龄。中朝板块与扬子板块碰撞时代主要发生在晚三叠世。  相似文献   
88.
Mount Bangou, an Eocene volcano (40K–40Ar ages between 44.7 and 43.1 ± 1 Ma) is the oldest dated volcano of the Cameroon Line. In this region, two magmatic series, evolving by fractional crystallization, show transitional affinities that are exceptionally known in this sector. Mineral compositions of basaltic rocks (scarce modal olivine and occurrence of normative hypersthene) as well as geochemical characteristics (low Ba, La, Ta contents and high Y/Nb ratios) are in agreement with this trend. The succession of magmas evolving in time from transitional to more typical alkaline compositions is evidenced in a continental setting. To cite this article: J. Fosso et al., C. R. Geoscience 337 (2005).  相似文献   
89.
The Central Tianshan belt in northwestern China is a small Precambrian block located in the southern part of the Central Asia Orogenic Belt (CAOB), which is considered as "the most voluminous block of young continental crust in the world" that comprises numerous small continental blocks separated by Paleozoic magmatic arcs. The Precambrian basement of the central Tianshan Mountains is composed of volcanic rocks and associated volcano-sedimentary rocks that were intruded by granitic plutons. Geochemical analyses demonstrate that the granitic plutons and volcanic rocks were generated in the Andean-type active continental arc environment like today's Chile, and the zircon U-Pb SHRIMP dating indicates that they were developed at about 956 Ma, possibly corresponding to the subduction of the inferred Mozambique Ocean under the Baltic-African super-continent.  相似文献   
90.
Geothermalanomalyisaphenomenonthatundergroundtemperatureandgeothermalgradientincreasesmuchmoreintheareathanitssurroundings(Xia,1979).Abruptgeothermalanomalymeansthatundergroundtemperatureonsomespotsaswellastheaffectedtemperatureofsurroundingareaabr…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号