首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6446篇
  免费   419篇
  国内免费   524篇
测绘学   928篇
大气科学   719篇
地球物理   410篇
地质学   849篇
海洋学   74篇
天文学   612篇
综合类   485篇
自然地理   3312篇
  2024年   26篇
  2023年   43篇
  2022年   282篇
  2021年   294篇
  2020年   313篇
  2019年   351篇
  2018年   234篇
  2017年   307篇
  2016年   289篇
  2015年   275篇
  2014年   281篇
  2013年   522篇
  2012年   309篇
  2011年   386篇
  2010年   247篇
  2009年   328篇
  2008年   374篇
  2007年   403篇
  2006年   332篇
  2005年   288篇
  2004年   279篇
  2003年   228篇
  2002年   193篇
  2001年   139篇
  2000年   128篇
  1999年   97篇
  1998年   88篇
  1997年   83篇
  1996年   37篇
  1995年   49篇
  1994年   31篇
  1993年   30篇
  1992年   18篇
  1991年   15篇
  1990年   10篇
  1989年   13篇
  1988年   18篇
  1987年   15篇
  1986年   9篇
  1985年   7篇
  1984年   9篇
  1983年   5篇
  1982年   4篇
排序方式: 共有7389条查询结果,搜索用时 15 毫秒
131.
兰州市2001年沙尘气溶胶质量浓度的特征分析   总被引:11,自引:14,他引:11  
 分析了2001年沙尘暴期间兰州与靠近沙尘源区的武威的沙尘浓度和粒径分布特征,并运用对数正态分布规律拟合了沙尘粒径的分布。通过对比武威、皋兰和兰州沙尘暴期间沙尘浓度的变化以及武威与兰州的沙尘粒径分布特征,揭示了河西走廊沙漠对兰州市沙尘暴的影响。  相似文献   
132.
固沙林庇护区内降尘特征的初步观测   总被引:2,自引:1,他引:2  
张华  何红  李锋瑞 《干旱区地理》2005,28(2):156-160
采用野外定位实测法,连续两年对科尔沁沙地24龄人工固沙杨树(Populussimonii)林庇护区内4~6月份及强沙尘暴事件中的降尘特征进行了观测研究。结果表明:(1)林地庇护区内4、5月份的降尘量较多,分别为273和437kg/hm2,6月份的降尘量较少,为171kg/hm2。(2)林地中央的滞尘效应在风蚀季节和强沙尘暴天气过程中十分显著。(3)林地庇护区内的降尘中粒径<0.02mm颗粒含量占60.7%,降尘中的全C、全N和速效P含量分别高达1.676%、0.163%和210.66mg/kg,这对风沙土表层土壤的细化和养分的积累具有重要的生态学意义。  相似文献   
133.
中国城市职能分类研究综述   总被引:5,自引:1,他引:5  
城市职能分类的研究一直以来就是城市地理学研究的重要领域。在简要回顾中国城市职能分类研究的主要成果和观点的基础上,从研究的阶段性角度将城市职能分类分为研究初步展开、研究发展、研究逐步完善3个时期;并提出为适应新形势的发展,城市职能分类研究将在拓展研究对象、创新研究方法、完善数据指标体系、充分利用研究成果等方面得到完善和提高。  相似文献   
134.
The near-to-nature approach has been established as best practice for stormwater management. However, pollutant mobility within such systems and its impact on small receiving waters are partly unexplained. The study takes place in an urbanised headwater catchment in south-western Germany with an area of 0.4 km2. Runoff from roofs, roads, parking lots and gardens is collected in wells or trenches and stored in private and public dry detention basins. Accordingly, this study investigates pollutant input to a detention pond, removal efficiency and the associated effects on the receiving water.Grab samples with high temporal resolution of the receiving water (16 flood events with 315 samples and 41 baseflow samples), the three inflows of the detention basin and its outflow (four flood events with 64 samples) were taken. The outflow of the dry pond is recovered in the hydro- and chemographs of the receiving water. Runoff from roads with increased traffic volume caused the highest PAH inputs and runoff from the residential area showed the highest zinc concentrations, which partly infringe European Environmental Quality Standards. Yearly pollutant inputs (DOC, TSS, PAH, nutrients, metals) from the settlement into the tributary are reduced in the detention pond by up to 80%.  相似文献   
135.
Current land-use classifications used to assess urbanization effects on stream water quality date back to the 1980s when limited information was available to characterize watershed attributes that mediate non-point source pollution. With high resolution remote sensing and widely used GIS tools, there has been a vast increase in the availability and precision of geospatial data of built environments. In this study, we leverage geospatial data to expand the characterization of developed landscapes and create a typology that allows us to better understand the impact of complex developed landscapes across the rural to urban gradient. We assess the ability of the developed landscape typology to reveal patterns in stream water chemistry previously undetected by traditional land-cover based classification. We examine the distribution of land-cover, infrastructure, topography and geology across 3876 National Hydrography Dataset Plus catchments in the Piedmont region of North Carolina, USA. From this dataset, we generate metrics to evaluate the abundance, density and position of landscape features relative to streams, catchment outlets and topographic wetness metrics. While impervious surfaces are a key distinguishing feature of the urban landscape, sanitary infrastructure, population density and geology are better predictors of baseflow stream water chemistry. Unsupervised clustering was used to generate a distinct developed landscape typology based on the expanded, high-resolution landscape feature information. Using stream chemistry data from 37 developed headwater catchments, we compared the baseflow water chemistry grouped by traditional land-cover based classes of urbanization (rural, low, medium and high density) to our composition and structure-based classification (a nine-class typology). The typology based on 22 metrics of developed landscape composition and structure explained over 50% of the variation in NO3-N, TDN, DOC, Cl, and Br concentration, while the ISC-based classification only significantly explained 23% of the variation in TDN. These results demonstrate the importance of infrastructure, population and geology in defining developed landscapes and improving discrete classes for water management.  相似文献   
136.
A hydraulic invariance (HI)‐based methodology was developed as a tool to support implementation of storm flow control measures into land use master plans (LUMPs) for urban catchments. The methodology is based on the use of simple hydrologic analysis to compare predevelopment and postdevelopment catchment flow release scenarios. Differently from previous literature examples, for which the parcel scale is usually considered for the analysis, HI was pursued assuming the LUMP areas of transformation as the basic units for assigning storm water control measures in the form of flow release restrictions. The methodology was applied to a case study catchment in the southern part of the City of Catania (Italy), for which the LUMP re‐design has been recently proposed. Simulations were run based on the use of the EPA‐Storm Water Management Model and allowed deriving flow release restrictions in order to achieve HI at the subcatchment level for design events of different return period.  相似文献   
137.
Street and garden trees in urban areas are often exposed to advection of strong vapour pressure deficit (VPD) air that can raise the whole‐tree transpiration rate (ET), known as the oasis effect. However, urban trees tend to have small soil volume compared with natural conditions, and so they are believed to strongly regulate stomata. ET characteristics of such urban trees have not been well understood because of a lack of reliable measurement methods. Therefore, we propose a novel weighing lysimeter method and investigate the whole‐tree water balance of an isolated container‐grown Zelkova serrata to examine (a) which biotic and abiotic factors determine ET and (b) which spatial and temporal information is needed to predict ET under urban conditions. Whole‐tree water balance and environmental conditions were measured from 2010 to 2012. Although leaf area substantially increased in the study period, daily ET did not vary much. ET increased with VPD almost linearly in 2010 but showed saturation in 2011 and 2012. Root water uptake lagged ET by 40 min in 2012. These results suggest that the small planter box interfered with root growth and that hydraulic supply capacities did not increase sufficiently to support leaf area increase. From analysis of water balance, we believe that neglecting soil drought effects on street trees without irrigation in Japan will overestimate ET over 4–5 sunny days at the longest. This is unlike previous studies of forest.  相似文献   
138.
Run‐off from impervious surfaces has pervasive and serious consequences for urban streams, but the detrimental effects of urban stormwater can be lessened by disconnecting impervious surfaces and redirecting run‐off to decentralized green infrastructure. This study used a before–after‐control‐impact design, in which streets served as subcatchments, to quantify hydrologic effectiveness of street‐scale investments in green infrastructure, such as street‐connected bioretention cells, rain gardens and rain barrels. On the two residential treatment streets, voluntary participation resulted in 32.2% and 13.5% of parcels having green infrastructure installed over a 2‐year period. Storm sewer discharge was measured before and after green infrastructure implementation, and peak discharge, total run‐off volume and hydrograph lags were analysed. On the street with smaller lots and lower participation, green infrastructure installation succeeded in reducing peak discharge by up to 33% and total storm run‐off by up to 40%. On the street with larger lots and higher participation, there was no significant reduction in peak or total stormflows, but on this street, contemporaneous street repairs may have offset improvements. On the street with smaller lots, lag times increased following the first phase of green infrastructure construction, in which streetside bioretention cells were built with underdrains. In the second phase, lag times did not change further, because bioretention cells were built without underdrains and water was removed from the system, rather than just delayed. We conclude that voluntary green infrastructure retrofits that include treatment of street run‐off can be effective for substantially reducing stormwater but that small differences in design and construction can be important for determining the level of the benefit. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
139.
We calibrated an integrated flow–tracer model to simulate spatially distributed isotope time series in stream water in a 7.9‐km2 catchment with an urban area of 13%. The model used flux tracking to estimate the time‐varying age of stream water at the outlet and both urbanized (1.7 km2) and non‐urban (4.5 km2) sub‐catchments over a 2.5‐year period. This included extended wet and dry spells where precipitation equated to >10‐year return periods. Modelling indicated that stream water draining the most urbanized tributary was youngest with a mean transit time (MTT) of 171 days compared with 456 days in the non‐urban tributary. For the larger catchment, the MTT was 280 days. Here, the response of urban contributing areas dominated smaller and more moderate runoff events, but rural contributions dominated during the wettest periods, giving a bi‐modal distribution of water ages. Whilst the approach needs refining for sub‐daily time steps, it provides a basis for projecting the effects of urbanization on stream water transit times and their spatial aggregation. This offers a novel approach for understanding the cumulative impacts of urbanization on stream water quantity and quality, which can contribute to more sustainable management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
140.
Urban floods pose a societal and economical risk. This study evaluated the risk and hydro-meteorological conditions that cause pluvial flooding in coastal cities in a cold climate. Twenty years of insurance claims data and up to 97 years of meteorological data were analysed for Reykjavík, Iceland (64.15°N; <100 m above sea level). One third of the city's wastewater collection system is combined, and pipe grades vary from 0.5% to 10%. Results highlight semi-intensive rain (<7 mm/h; ≤3 year return period) in conjunction with snow and frozen ground as the main cause for urban flood risk in a climate which undergoes frequent snow and frost cycles (avg. 13 and 19 per season, respectively). Floods in winter were more common, more severe and affected a greater number of neighbourhoods than during summer. High runoff volumes together with debris remobilized with high winds challenged the capacity of wastewater systems regardless of their age or type (combined vs. separate). The two key determinants for the number of insurance claims were antecedent frost depth and total precipitation volume per event. Two pluvial regimes were particularly problematic: long duration (13–25 h), late peaking rain on snow (RoS), where snowmelt enhanced the runoff intensity, elongated and connected independent rainfall into a singular, more voluminous (20–76 mm) event; shorter duration (7–9 h), more intensive precipitation that evolved from snow to rain. Closely timed RoS and cooling were believed to trigger frost formation. A positive trend was detected in the average seasonal snow depth and volume of rain and snowmelt during RoS events. More emphasis, therefore, needs to be placed on designing and operating urban drainage infrastructure with regard to RoS co-acting with frozen ground. Furthermore, more detailed, routine monitoring of snow and soil conditions is important to predict RoS flood events.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号