首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   52篇
  国内免费   101篇
测绘学   1篇
大气科学   61篇
地球物理   88篇
地质学   120篇
海洋学   132篇
综合类   29篇
自然地理   22篇
  2024年   3篇
  2023年   10篇
  2022年   12篇
  2021年   14篇
  2020年   19篇
  2019年   21篇
  2018年   18篇
  2017年   14篇
  2016年   7篇
  2015年   14篇
  2014年   23篇
  2013年   29篇
  2012年   14篇
  2011年   28篇
  2010年   18篇
  2009年   25篇
  2008年   26篇
  2007年   11篇
  2006年   21篇
  2005年   13篇
  2004年   17篇
  2003年   13篇
  2002年   8篇
  2001年   10篇
  2000年   9篇
  1999年   5篇
  1998年   7篇
  1997年   6篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1989年   2篇
  1988年   1篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
排序方式: 共有453条查询结果,搜索用时 0 毫秒
71.
72.
Before ESR/U-series models were applied to ungulate teeth, it is generally assumed that calculated ages are close to the “real” ages when they range between the values obtained with the EU and LU models. When the samples show signs of uranium-leaching, a realistic mathematical modelling of the age is not possible. On the other hand, some samples have undergone a very late U-uptake “affecting” directly the U-series ages and rendering the calculated ages younger.

We present results obtained on two open-air sites, which show the limits of such combined models in the case of late uranium incorporation. For the Middle Pleistocene site of Isernia la Pineta (Italy), the ESR dates are expected to fall within the limits imposed by the Ar–Ar results. The other site, the Lower Palaeolithic deposits of Ambrona (Spain), yielded two sets of samples: some at the top of the sequence with uranium uptake ranging between EU and LU limits and thus giving a good idea of the “real” age of the site; others at the base displaying a very late U-uptake, which render an age determination difficult.  相似文献   

73.
Effects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil (gas_min) at which oxygen stress occurs.First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, gas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale).We analyzed the validity of constant critical values to represent oxygen stress in terms of gas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake).The simulations showed that gas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, gas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress.We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for gas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.  相似文献   
74.
Global distributions of carbonyl sulfide and carbon disulfide have been calculated with a three-dimensional global model of the atmospheric general circulation (ECHAM). The model calculates a global sink strength for carbonyl sulfide of 0.3 Tg S yr-1, with vegetation uptake being the largest sink. With this sink strength, the sources have to be close to the lower limit of the present estimate in the literature. The calculated mixing ratios are higher in the Southern Hemisphere than in the Northern Hemisphere. This interhemispheric gradient is the opposite of what is observed demonstrating that the present knowledge of the distribution of sinks and sources is not fully adequate. The model calculations support the idea that the open oceans could act as a net sink of carbonyl sulfide. The calculated stratospheric photolysis of carbonyl sulfide constitutes about 4% of the total sink of carbonyl sulfide. A stratospheric production of sulfate from carbonyl sulfide of 0.013 Tg S yr-1 is obtained, which is 3 to 12 times less than what is needed to maintain the stratospheric sulfate aerosol layer. Although these results are associated with uncertainties, due to the low upper boundary and coarse vertical resolution of the model, they support recent findings of a low stratospheric production of sulfate from carbonyl sulfide. Instead, sulfur dioxide transported from the troposphere is calculated to be the most important precursor for the stratospheric sulfate aerosol layer.  相似文献   
75.
This paper presents the results of investigation on uptake of radioactive species 90Sr and 137Cs present in the liquid effluents from nuclear processing plants. Chemical precipitation process is adopted to remove radioactivity from the effluents with low and intermediate level of activity. In this process, radioactive 90Sr and 137Cs are co-precipitated along with copper ferrocyanide, ferric hydroxide and either calcium phosphate or barium sulphate. These precipitates being fine in size require flocculation for enhanced settling rate in clarifier/thickener. The flocculation by some selected high molecular weight polyacrylamide based polymers has improved the uptake of radioactive metal ions. The adsorption of these radioactive species has been found to increase in the presence of these flocculants thereby improving the decontamination factor (DF). While flocculating the precipitates, there may be some complex formation with Sr2+/Cs+, flocculant and the substrate. This has enhanced the uptake of the radioactive metal ions from the liquid component. The plant trials have indicated the improvement of DF value due to flocculation by cationic flocculant.  相似文献   
76.
柴达木盆地三湖地区第四系生物气的形成途径与运聚方式   总被引:22,自引:1,他引:22  
柴达木盆地三湖(台吉乃尔湖、涩聂湖、达布逊湖)地区第四系生物气区是我国最大的生物气区。笔者系统采集了该气区21个天然气样品,测量了其组分和碳同位素组成,重点探讨了生物气形成途径和运聚方式。生物气δ~(13)C_1和δ~(13)C_(CO_2)均随深度增大而变重,显示了CO_2还原途径成气的特征。生物气δ~(13)C_1、δ~(13)C_(CO_2)和δD分布与CO_2还原方式形成的生物气的相应同位素值分布范围接近。在有关成因图解中这些数据主要位于CO_2还原途径成气范围内。生物气CO_2和CH_4之间的碳同位素分馏系数α_c>1.055,具有CO_2还原途径成气的特征。柴达木盆地第四纪干旱的古气候、较低的古温度、较高的沉积速率和水体中较高的硫酸盐含量使得甲烷菌的大量繁殖只能在较大的深度范围内才能实现,从而,有利于CO_2还原途径成气作用进行。涩北一号、涩北二号气田生物气δ~(13)C_1组成分布可能表明,生物气形成以后沿疏导层水平运移进入气藏,基本不存在垂向运移。该项研究对于进一步深入探讨生物气成因、形成条件,确定生物气模拟实验方式与条件,计算生物气资源量,建立成藏模式和选择天然气有利勘探区块均具有重要价值。  相似文献   
77.
78.
输导通道类型对天然气聚集效率的影响   总被引:6,自引:0,他引:6  
通过对中国大中型气田天然气输导通道类型及影响因素研究,得到中国大中型气田主要有断裂、断裂与不整合组合、砂体、断裂与砂体组合、不整合与砂体组合和不整合6种输导通道类型。其中以断裂为主,其次是断裂与不整合组合,再次是砂体和断裂与砂体组合,最少为不整合和不整合与砂体组合。它们主要受盆地类型、盆地内构造带类型和源储空间位置关系的影响。由中国大中型气田储量、含气面积和聚集时问,通过求取其天然气聚集效率,把中国大中型气田划分为高效、中效和低效3类气田。通过中国大中型气田天然气聚集效率与输导通道类型之间关系分析,得到聚集时间相对较晚的断裂、砂体和断裂与不整合组合形成的输导通道天然气聚集效率相对较高,有利于快速形成大中型气田。  相似文献   
79.
Abstract

Knowledge of the hydrochemical dynamics of the trace metal manganese (Mn) in upland catchments is required for water quality management. Stream water Mn and other solutes and flow were monitored in two upland catchments in northern England with different soils: one dominated by peat (HS7), the other by mineral soils (HS4). Maximum Mn concentrations occurred at different times in the two catchments: in summer baseflow at HS4 and during late summer storm events at HS7. A two-component chemical mixing model was used to identify the hydrological processes controlling Mn concentrations in stream water. This approach was more successful for HS4 than HS7, probably because of different processes of Mn release in the two catchments and also difficulties in selecting conservative solutes. Factor analysis of the stream water chemistry data set for each catchment was more useful in identifying the controls on Mn release into runoff. The factors indicate that the main source of Mn at HS4 is the hydrological pathway supplying summer baseflow, whereas at HS7 Mn is released during the rewetting of dried peat soils. Manganese concentrations in stream water in upland catchments appear to depend on soil type and antecedent moisture conditions. This has implications for the design of sampling strategies in upland catchments and also for managing the quality of water supplies from such areas.  相似文献   
80.
以经济马尾藻铜藻(Sargassum horneri)为研究材料,研究了其在营养限制胁迫后对NH_4-N的超补偿吸收情况。实验分营养限制和恢复营养两个阶段进行,每个阶段均设置饥饿处理组、饱和处理组和正常对照组。铜藻在低营养限制胁迫(饥饿)下培养10天后,恢复营养盐培养3天,分别采用次溴酸盐氧化法和锌镉还原法测定培养液中的NH_4-N和NO_3-N的浓度。本文研究发现,饥饿处理组中铜藻吸收氨氮的速率远高于正常对照组和饱和处理组,在恢复培养第一天时,饥饿处理组对NH_4-N的吸收速率最高为14.94μmol/(g·h),与正常对照组及饱和处理组间差异显著。在恢复培养的后两天,三个处理组中铜藻对NH_4-N的吸收速率差异慢慢变小,直至最后几乎相同。三组对NO_3-N没有表现出较高的吸收,最高仅为6.15μmol/(g·h),结果表明:氮源包括NH_4-N和NO_3-N时,铜藻优先选择吸收NH_4-N。实验后称重测定生长速率:对照组、饥饿处理组和饱和组生长率(SGR)分别为8.48%、8.86%、8.01%,ANOVA方差分析表明,三者存在显著差异(P=0.0320.05),从而证实了铜藻也存在超补偿生长的现象。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号