首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   895篇
  免费   134篇
  国内免费   276篇
测绘学   77篇
大气科学   98篇
地球物理   232篇
地质学   597篇
海洋学   188篇
天文学   12篇
综合类   28篇
自然地理   73篇
  2024年   7篇
  2023年   22篇
  2022年   30篇
  2021年   46篇
  2020年   45篇
  2019年   42篇
  2018年   35篇
  2017年   40篇
  2016年   43篇
  2015年   49篇
  2014年   53篇
  2013年   64篇
  2012年   58篇
  2011年   56篇
  2010年   49篇
  2009年   52篇
  2008年   58篇
  2007年   57篇
  2006年   73篇
  2005年   54篇
  2004年   43篇
  2003年   34篇
  2002年   27篇
  2001年   38篇
  2000年   41篇
  1999年   28篇
  1998年   26篇
  1997年   32篇
  1996年   24篇
  1995年   11篇
  1994年   17篇
  1993年   11篇
  1992年   7篇
  1991年   12篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1978年   2篇
  1976年   1篇
排序方式: 共有1305条查询结果,搜索用时 31 毫秒
31.
黄土区人类活动影响下的 产汇流模拟研究   总被引:4,自引:0,他引:4  
日益频繁的人类活动改变了流域下垫面条件,对流域产汇流产生很大的影响。本文以黄河中游典型支流岔巴沟为研究区域,提出利用基于DEM的分布式水文模拟技术,探讨流域人类活动过程中的产汇流模拟,避免了经验公式的概化和由此引起的局限。模拟的结果证实了该方法的可行性。采用网格滞蓄的方法可以在子网格上体现人类活动引起的下垫面的变化及其对产汇流的影响,反映各个时期的产汇流条件,对降雨做出合理响应。  相似文献   
32.
Water percolation and flow processes in subsurface geologic media play an important role in determining the water source for plants and the transport of contaminants or nutrients, which is essential for water resource management and the development of measures for pollution mitigation. During June 2013, the dynamics of the rainwater, soil water, subsurface flows and groundwater in a shallow Entisol on sloping farmland were monitored using a hydrometric and isotopic approach. The results showed that effective mixing of rainwater and soil water occurred in hours. The rebound phenomenon of δD profiles in soils showed that most isotope‐depleted rainwater largely bypassed the soil matrix when the water saturation in the soil was high. Preferential‐flow, which was the dominant water movement pattern in the vadose zone, occurred through the whole soil profile, and infrequent piston‐flow was mainly found at 20–40 cm in depth. The interflow in the soil layer, composed of 75.2% rainwater, was only generated when the soil profile had been saturated. Underflow in the fractured mudrock was the dominant flow type in this hillslope, and outflow was dominated by base flow (groundwater flow) with a mean contribution of 76.7%. The generation mechanism of underflow was groundwater ridging, which was superimposed upon preferential‐flow composed mainly of rainwater. The quick mixing process of rainwater and soil water and the rapid movement of the mixture through preferential channels in the study soil, which shows a typical bimodal pore size distribution, can explain the prompt release of pre‐event water in subsurface flow. Water sources of subsurface flows at peak discharge could be affected by the antecedent soil water content, rain characteristics and antecedent groundwater levels. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
33.
Quantifying the impact of landscape on hydrological variables is essential for the sustainable development of water resources. Understanding how landscape changes influence hydrological variables will greatly enhance the understanding of hydrological processes. Important vegetation parameters are considered in this study by using remote sensing data and VIC-CAS model to analyse the impact of landscape changes on hydrology in upper reaches of the Shule River Basin (URSLB). The results show there are differences in the runoff generation of landscape both in space and time. With increasing altitude, the runoff yields increased, with approximately 79.9% of the total runoff generated in the high mountains (4200–5900 m), and mainly consumed in the mid-low mountain region. Glacier landscape produced the largest runoff yields (24.9% of the total runoff), followed by low-coverage grassland (LG; 22.5%), alpine cold desert (AL; 19.6%), mid-coverage grassland (MG; 15.6%), bare land (12.5%), high-coverage grassland (HG; 4.5%) and shrubbery (0.4%). The relative capacity of runoff generation by landscapes, from high to low, was the glaciers, AL, LG, HG, MG, shrubbery and bare land. Furthermore, changes in landscapes cause hydrological variables changes, including evapotranspiration, runoff and baseflow. The study revealed that HG, MG, and bare land have a positive impact on evapotranspiration and a negative impact on runoff and baseflow, whereas AL and LG have a positive impact on runoff and baseflow and a negative impact on evapotranspiration. In contrast, glaciers have a positive impact on runoff. After the simulation in four vegetation scenarios, we concluded that the runoff regulation ability of grassland is greater than that of bare land. The grassland landscape is essential since it reduced the flood peak and conserved the soil and water.  相似文献   
34.
We collected soil‐hydraulic property data from the literature for wildfire‐affected soils, ash, and unburned soils. These data were used to calculate metrics and timescales of hydrologic response related to infiltration and surface runoff generation. Sorptivity (S) and wetting front potential (Ψf) were significantly different (lower) in burned soils compared with unburned soils, whereas field‐saturated hydraulic conductivity (Kfs) was not significantly different. The magnitude and duration of the influence of capillarity during infiltration was greatly reduced in burned soils, causing faster ponding times in response to rainfall. Ash had large values of S and Kfs but moderate values of Ψf, compared with unburned and burned soils, indicating ash has long ponding times in response to rainfall. The ratio of S2/Kfs was nearly constant (~100 mm) for unburned soils but more variable in burned soils, suggesting that unburned soils have a balance between gravity and capillarity contributions to infiltration that may depend on soil organic matter, whereas in burned soils the gravity contribution to infiltration is greater. Changes in S and Kfs in burned soils act synergistically to reduce infiltration and accelerate and amplify surface runoff generation. Synthesis of these findings identifies three key areas for future research. First, short timescales of capillary influences on infiltration indicate the need for better measurements of infiltration at times less than 1 min to accurately characterize S in burned soils. Second, using parameter values, such as Ψf, from unburned areas could produce substantial errors in hydrologic modeling when used without adjustment for wildfire effects, causing parameter compensation and resulting underestimation of Kfs. Third, more thorough measurement campaigns that capture soil‐structural changes, organic matter impacts, quantitative water repellency trends, and soil‐water content along with soil‐hydraulic properties could drive the development of better techniques for numerically simulating infiltration in burned areas.  相似文献   
35.
The synthesis of experimental understanding of catchment behaviour and its translation into qualitative perceptual models is an important objective of hydrological sciences. We explore this challenge by examining the cumulative understanding of the hydrology of three experimental catchments and how it evolves through the application of different investigation techniques. The case study considers the Huewelerbach, Weierbach and Wollefsbach headwater catchments of the Attert basin in Luxembourg. Subsurface investigations including bore holes and pits, analysis of soil samples and Electrical Resistivity Tomography measurements are presented and discussed. Streamflow and tracer data are used to gain further insights into the streamflow dynamics of the catchments, using end‐member mixing analysis and hydrograph separation based on dissolved silica and electrical conductivity. We show that the streamflow generating processes in all three catchments are controlled primarily by the subsolum and underlying bedrock. In the Huewelerbach, the permeable sandstone formation supports a stable groundwater component with little seasonality, which reaches the stream through a series of sources at the contact zone with the impermeable marls formation. In the Weierbach, the schist formation is relatively impermeable and supports a ‘fill and spill’‐type of flow mechanism; during wet conditions, it produces a delayed response dominated by pre‐event water. In the Wollefsbach, the impermeable marls formation is responsible for a saturation‐excess runoff generating process, producing a fast and highly seasonal response dominated by event water. The distinct streamflow generating processes of the three catchments are represented qualitatively using perceptual models. The perceptual models are in turn translated into quantitative conceptual models, which simulate the hydrological processes using networks of connected reservoirs and transfer functions. More generally, the paper illustrates the evolution of perceptual models based on experimental fieldwork data, the translation of perceptual models into conceptual models and the value of different types of data for processes understanding and model representation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
36.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
37.
利用阿克苏及邻近地区12个气象站1980—2013年雷暴资料,以及同期高空资料,统计了各站年均雷暴日数,对发生区域雷暴天气的环流形势进行分类,归纳出各型的入型指标。通过逐步回归法,建立阿克苏及邻近地区区域雷暴概率回归预报模型,并对2013年进行试预报。结果表明:(1)阿克苏及邻近地区区域雷暴的影响系统主要分为4类:巴湖低槽型、急流型、西北气流型和温度槽型。(2)对2002—2012年5—9月(共1683 d)历史资料进行判别,满足入型条件的样本数为876 d,消空率为48%;对2013年5—9月(共153 d)历史资料进行判别,入型样本数为80 d,消空率为48%。(3)对2002—2012年5—9月所有入型样本进行回代检验,平均准确率为72.0%(平均TS评分为30.1%);对2013年5—9月所有入型样本进行试预报,平均准确率为63.2%(平均TS评分为28.2%)。  相似文献   
38.
Du Xinru  Lu Zi 《地球科学进展》2016,31(3):269-276
The application of ICTs makes structural change of the development and effective utilization of airspace. Next generation air transportation system (NextGen) includes new automation concepts with automated information to support the traffic control decision-making. As a result, in the field of academia and industry, air traffic controllers integrate information automatically while making decisions to change the previous manually integrated and decided pattern. The safety ability of airspace is reduced and airspace system is endangered under risky weather conditions of airspace. So there is an urgent demand for new information and communication technologies. The paper is an overview of the information constitution and support of NextGen and provides the study of the development of technique of airspace collaborative decision-makings to confirm the new features based on ICTs. It contains basic application-the input of data and output of the routes of airspace management and collaborative decision-making, and general application-the choose of probability nets of avoiding risky weather, and special application-the affection in the management of the air routes, which are made up of position and direction. The research shows the accurate schedule characteristics of airspace management and collaborative decision-making based on ICTs, which made the space accurate by time accurate. Second, the visualization of airspace management and collaborative decision-making based on ICTs made the maps of flight path under mobile data quickly generated. This could make the fully development and utilization of national airspace, ensure safety, and reduce air traffic controllers’ workload and the costs in delaying and operating in risky weather.  相似文献   
39.
姜海  郭海燕  张林  王伟 《海洋与湖沼》2016,47(6):1101-1106
为研究内孤立波质量源数值造波方法,本文采用两个点源形式的质量源,分别放置于两层流体的上下层中作为内孤立波激发源。推导源项表达式,从不可压缩流体的Navier-Stokes方程出发,结合内孤立波Kd V、e Kd V理论,基于商业软件FLUENT发展了一种内孤立波质量源数值造波方法。通过数值模拟,分析了质量源造波过程中内孤立波的生成过程,并将数值模拟结果同理论及实验作对比。结果表明:基于此方法生成的内孤立波波形、波高及波致水平速度与理论及实验吻合度较好,该方法是可行的,并且耗时短、效率高。  相似文献   
40.
Diagenesis is an essential tool to reconstruct the development of reservoir rocks. Diagenetic processes - precipitation and dissolution - have an influence on pore space. The present paper aims to study the diagenetic history of deep-marine sandstones of the Austrian Alpine Foreland Basin. To reach that goal, sediment petrology and diagenetic features of more than 110 sandstone samples from water- and gas-bearing sections from gas fields within the Oligocene-Miocene Puchkirchen Group and Hall Formation has been investigated. Special emphasis was put on samples in the vicinity of the gas-water contact (GWC). The sediment petrography of sandstones of Puchkirchen Group and Hall Formation is similar; hence their diagenesis proceeded the same way. In fact, primary mineralogy was controlled by paleo-geography with increasing transport distance and diverse detrital input.Sediment petrographically, investigated sandstones from the water-bearing horizon seemed quite comparable to the gas-bearing sediments. In general, they can be classified as feldspatic litharenites to litharenites and display porosities of up to 30% and permeabilities of up to 1300 mD. The carbon and oxygen isotopic composition of bulk carbonate cements from these sandstones range from−3.8 to +2.2 and from −7.5 to +0.2‰ [VPDB]. However, near the Gas-Water Contact (GWC) a horizon with low porosities (<3%) and permeabilities (<0.1 mD) is present. This zone is completely cemented with calcite, which has a blocky/homogenous morphology. A slight, but significant negative shift in δ18O isotopy (−2.5‰) is evident.During early diagenesis the first carbonate generations formed. First a fibrous calcite and afterwards a micritic calcite precipitated. Further siliciclastic minerals, such as quartz and feldspar (K-feldspar and minor plagioclase), exhibit corroded grains. Occasionally, clay minerals (illite; smectite, chlorite) formed as rims around detrital grains. Late diagenesis is indicated by the formation of a low permeable zone at the GWC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号