首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   102篇
  国内免费   317篇
大气科学   6篇
地球物理   79篇
地质学   607篇
海洋学   9篇
综合类   8篇
自然地理   12篇
  2024年   2篇
  2023年   12篇
  2022年   19篇
  2021年   12篇
  2020年   33篇
  2019年   29篇
  2018年   24篇
  2017年   16篇
  2016年   29篇
  2015年   31篇
  2014年   17篇
  2013年   46篇
  2012年   36篇
  2011年   44篇
  2010年   41篇
  2009年   40篇
  2008年   40篇
  2007年   33篇
  2006年   40篇
  2005年   23篇
  2004年   34篇
  2003年   21篇
  2002年   18篇
  2001年   16篇
  2000年   11篇
  1999年   12篇
  1998年   11篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有721条查询结果,搜索用时 875 毫秒
71.
The problem of the dynamic responses of a semi‐infinite unsaturated poroelastic medium subjected to a moving rectangular load is investigated analytical/numerically. The dynamic governing equations are obtained with consideration of the compressibility of solid grain and pore fluid, inertial coupling, and viscous drag as well as capillary pressure in the unsaturated soil, and they can be easily degraded to the complete Biot's theory. Using the Fourier transform, the general solution for the equations is derived in the transformed domain, and then a corresponding boundary value problem is formulated. By introducing fast Fourier transform algorithm, the unsaturated soil vertical displacements, effective stresses, and pore pressures induced by moving load are computed, and some of the calculated results are compared with those for the degenerated solution of saturated soils and confirmed. The influences of the saturation, the load speed, and excitation frequency on the response of the unsaturated half‐space soil are investigated. The numerical results reveal that the effects of these parameters on the dynamic response of the unsaturated soil are significant.  相似文献   
72.
非饱和水分运动参数空间变异与最优估值研究   总被引:17,自引:3,他引:14       下载免费PDF全文
以野外砂壤土30m×30m空间的实测土壤参数试验为基础,通过对实测数据的统计分析得到饱和水力传导度KS及容水度C遵从正态分布,而孔隙大小分布参数α遵从对数正态分布。应用变差函数对参数KS和α的空间结构进行分析得到两参数的空间结构可用球状变差函数模型进行描述。根据Kriging最优估值理论,分别对两参数空间的值进行了估计,结果表明本研究的野外实测试验点的数目减少26%即可满足精度要求,同时与克立格方法相比采用协克立格方法对参数lnα进行估计,其估计方差平均减少6.87%。  相似文献   
73.
雨水入渗对非饱和土坡稳定性影响的参数研究   总被引:57,自引:1,他引:56  
很多国家和地区的斜坡失稳与雨水入渗有密切关系。通过参数分析研究可以深化对这种关系的认识和理解,因而对滑坡灾害的预测和预防有重要意义。针对香港地区一种典型非饱和土斜坡,用有限元法模拟雨水入渗引起的暂态渗流场,然后将计算得到的暂态孔隙水压力分布用于斜坡的极限平衡分析。计算中采用延伸的摩尔-库伦破坏准则以便考虑基质吸力对抗剪强度的贡献,研究了降雨特征、水文地质条件及坡面防渗处理等因素对暂态渗流场和斜坡安全因数的影响。数值模拟结果表明:降雨强度、降雨历时和雨型对暂态渗流场及斜坡稳定性有明显的影响;土体的渗透系数,尤其是渗透系数各向异性的影响特别显著;斜坡中相对隔水层的存在以及斜坡防渗护面的效果等因素的影响均不容忽视。  相似文献   
74.
This paper presents an approach to estimate the effects of a managed recharge experiment in a multilayer aquifer characterized by the presence of perched water tables in the Medina del Campo groundwater body, Douro basin, central Spain. A numerical model was developed to evaluate the effect of artificial recharge on the shallow sector of a regional-scale aquifer and on formerly active wetlands. The model was developed in the Visual MODFLOW Pro v.2011.1 environment in order to represent and analyse the regional impact of this artificial recharge event. Results suggest that the assumption of a single perched system may prove useful in regional contexts where data is limited. From a study site perspective, managed recharge is observed to increase shallow storage along the riverbanks, which is considered valuable for environmental purposes. However, downstream wetlands are unlikely to experience a significant recovery. Furthermore, only a small percentage of artificial recharge is expected to reach the deep regional aquifer. This method can be exported to settings characterized by the presence of perched aquifers and associated groundwater dependent ecosystems.  相似文献   
75.
This study presents a thermo-hydro-mechanical (THM) model of unsaturated soils using isogeometric analysis (IGA). The framework employs Bézier extraction to connect IGA to the conventional finite element analysis (FEA), featuring the current study as one of the first attempts to develop an IGA-FEA framework for solving THM problems in unsaturated soils. IGA offers higher levels of interelement continuity making it an attractive method for solving highly nonlinear problems. The governing equations of linear momentum, mass, and energy balance are coupled based on the averaging procedure within the hybrid mixture theory. The Drucker-Prager yield surface is used to limit the modified effective stress where the model follows small strain, quasi-static loading conditions. Temperature dependency of the surface tension is implemented in the soil-water retention curve. Nonuniform rational B-splines (NURBS) basis functions are used in the standard Galerkin method and weak formulations of the balance equations. Displacement, capillary pressure, gas pressure, and temperature are four independent quantities that are approximated by NURBS in spatial discretization. The framework is used to simulate strain localization in an undrained dense sand subjected to plane strain biaxial compression under different temperatures and displacement velocities. Results show that an increase in the displacement rate leads to reduction in the equivalent plastic strain while an increase in the temperature leads to an increase in the equivalent plastic strain. The findings suggest that the proposed IGA-based framework offers a viable alternative for solving THM problems in unsaturated soils.  相似文献   
76.
This paper focuses attention on the development of a numerical model of the hydro/thermo/mechanical behaviour of unsaturated clay and its consequent verification and validation. The work presented describes on-going collaboration between the Cardiff School of Engineering and Atomic Energy of Canada. The model development, which was carried out at Cardiff, can be described as being based on a mechanistic approach to coupled heat, moisture and air flow. This is then linked to a deformation analysis of the material within a ‘consolidation’ type of model. The whole is solved via the finite element method to yield a computer software code named COMPASS (COde for Modelling PArtly Saturated Soil). Some aspects of verification and validation of the model have been addressed in-house. However, the purpose of current AECL work is to provide an independent, rigorous, structured programme of validation and the paper will also explore the further validation of COMPASS within this context. © 1998 by John Wiley & Sons, Ltd.  相似文献   
77.
Andosol soils formed in volcanic ash provide key hydrological services in montane environments. To unravel the subsurface water transport and tracer mixing in these soils we conducted a detailed characterization of soil properties and analyzed a 3-year data set of sub-hourly hydrometric and weekly stable isotope data collected at three locations along a steep hillslope. A weakly developed (52–61 cm depth), highly organic andic (Ah) horizon overlaying a mineral (C) horizon was identified, both showing relatively similar properties and subsurface flow dynamics along the hillslope. Soil moisture observations in the Ah horizon showed a fast responding (few hours) “rooted” layer to a depth of 15 cm, overlying a “perched” layer that remained near saturated year-round. The formation of the latter results from the high organic matter (33–42%) and clay (29–31%) content of the Ah horizon and an abrupt hydraulic conductivity reduction in this layer with respect to the rooted layer above. Isotopic signatures revealed that water resides within this soil horizon for short periods, both at the rooted (2 weeks) and perched (4 weeks) layer. A fast soil moisture reaction during rainfall events was also observed in the C horizon, with response times similar to those in the rooted layer. These results indicate that despite the perched layer, which helps sustain the water storage of the soil, a fast vertical mobilization of water through the entire soil profile occurs during rainfall events. The latter being the result of the fast transmissivity of hydraulic potentials through the porous matrix of the Andosols, as evidenced by the exponential shape of the water retention curves of the subsequent horizons. These findings demonstrate that the hydrological behavior of volcanic ash soils resembles that of a “layered sponge,” in which vertical flow paths dominate.  相似文献   
78.
The simultaneous transfer of pore fluid and vapour was studied in the unsaturated shallow subsurface of a Plio-Pleistocene marine mudstone badland slope in southwestern Taiwan during the dry season using field monitoring data and numerical simulations. Data from field monitoring show mass-basis water contents of ~0.05 to ~0.10 that decrease towards the unsaturated ground surface and were invariant during the middle part of the dry season, except for daily fluctuations. In addition, the observed daily fluctuations in water content correlate with fluctuations in bedrock temperature, especially at depths of 2.5–5.0 cm. Periodic increases in water content occurred most notably during the day, when the bedrock temperature showed the greatest increase. Water contents then decreased to the previous state as bedrock temperature decreased during the night. Calculated vapour fluxes within the mudstone during the day increased up to 6 × 10−6–1 × 10−5 kg m−2 s−1, deriving a 0.01–0.02 increase in mass-basis water content at 2.5 cm depth for a 12-h period. This agrees with field monitoring data, suggesting that increases in water content occurred due to vapour intrusions into the bedrock. Pore water electrical conductivity (EC) showed periodic variations due to vapour intrusion, and gradually increased between the ground surface and depths of 2.5–5.0 cm. In contrast, pore water EC gradually decreased between 15 and 40 cm depth. Calculated water fluxes at depths of 2.5–40.0 cm varied from −4 × 10−6 to −2 × 10−9 kg m−2 s−1. These fluxes generated an increase in solute concentrations at the ground surface, with negative values of water flux indicating an upwards movement of water towards the surface. We show that the increase in solute content due to solute transfer from depth is highly dependent on variations in water flux with depth. © 2020 John Wiley & Sons, Ltd.  相似文献   
79.
基于对非饱和多孔介质的研究成果,考虑孔隙中的液相和气相的相互影响,研究非饱和土地基中剪切S波的传播特性。通过非饱和土中固相、液相和气相的质量平衡方程、动量平衡方程和非饱和土有效应力原理,建立问题的弹性波动方程,经过理论推导给出非饱和土中剪切S波的弥散特征方程。通过数值算例分析剪切S波的波速和衰减系数随饱和度、频率和固有渗透系数等因素的变化规律。结果表明,剪切S波的波速几乎不受饱和度的影响,但其随着频率的增大而减小,随着固有渗透系数的增大先不变后增大;剪切S波的衰减系数随着饱和度和频率的增加均增大,而随着固有渗透系数的增大先不变后增大最后减小。  相似文献   
80.
饶登宇  白冰  陈佩佩 《岩土力学》2018,39(12):4527-4536
在考虑相变的热能平衡方程和非饱和水分迁移质量控制方程的基础上,建立温度场-水分场的耦合模型,并采用一种无网格粒子算法(SPH)进行数值求解。其中,耦合方程中考虑了水流传热以及温度势对水流的直接驱动,在不考虑相变的情况下,该耦合模型可退化为常温下的水-热耦合模型,故可用于模拟冻融循环的相关问题。从求解热能平衡方程中的含冰量出发,实现解耦并对半无限单向冻结条件下介质内非稳态温度场和体积含水率分布场进行模拟,将耦合作用下的温度场与不耦合的解析解进行对比,反映出水分迁移对温度场存在较大影响。最后,求解了路基边坡在季节性周期温度边界下,温度场、水分场分布的演变规律,并评估了边坡阴阳面受热不均对水热两场分布的影响。计算结果基本能反映土冻结相变的实际物理过程,光滑粒子算法可以用于尝试解决冻土领域的其他相关问题。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号