首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   302篇
  免费   102篇
  国内免费   317篇
大气科学   6篇
地球物理   79篇
地质学   607篇
海洋学   9篇
综合类   8篇
自然地理   12篇
  2024年   2篇
  2023年   12篇
  2022年   19篇
  2021年   12篇
  2020年   33篇
  2019年   29篇
  2018年   24篇
  2017年   16篇
  2016年   29篇
  2015年   31篇
  2014年   17篇
  2013年   46篇
  2012年   36篇
  2011年   44篇
  2010年   41篇
  2009年   40篇
  2008年   40篇
  2007年   33篇
  2006年   40篇
  2005年   23篇
  2004年   34篇
  2003年   21篇
  2002年   18篇
  2001年   16篇
  2000年   11篇
  1999年   12篇
  1998年   11篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有721条查询结果,搜索用时 296 毫秒
21.
Shrink–swell soils can cause distresses in buildings, and every year, the economic loss associated with this problem is huge. This paper presents a comprehensive system for simulating the soil–foundation–building system and its response to daily weather conditions. Weather data include rainfall, solar radiation, air temperature, relative humidity, and wind speed, all of which are readily available from a local weather station or the Internet. These data are used to determine simulation flux boundary conditions. Different methods are proposed to simulate different boundary conditions: bare soil, trees, and vegetation. A coupled hydro‐mechanical stress analysis is used to simulate the volume change of shrink–swell soils due to both mechanical stress and water content variations. Coupled hydro‐mechanical stress‐jointed elements are used to simulate the interaction between the soil and the slab, and general shell elements are used to simulate structural behavior. All the models are combined into one finite element program to predict the entire system's behavior. This paper first described the theory for the simulations. A site in Arlington, Texas, is then selected to demonstrate the application of the proposed system. Simulation results are shown, and a comparison between measured and predicted movements for four footings in Arlington, Texas, over a 2‐year period is presented. Finally, a three‐dimensional simulation is made for a virtual residential building on shrink–swell soils to identify the influence of various factors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
22.
The present study investigates propagation of a cohesive crack in non‐isothermal unsaturated porous medium under mode I conditions. Basic points of skeleton deformation, moisture, and heat transfer for unsaturated porous medium are presented. Boundary conditions on the crack surface that consist of mechanical interaction of the crack and the porous medium, water, and heat flows through the crack are taken into consideration. For spatial discretization, the extended finite element method is used. This method uses enriched shape functions in addition to ordinary shape functions for approximation of displacement, pressure, and temperature fields. The Heaviside step function and the distance function are exploited as enrichment functions for representing the crack surfaces displacement and the discontinuous vertical gradients of the pressure and temperature fields along the crack, respectively. For temporal discretization, backward finite difference scheme is applied. Problems solved from the literature show the validity of the model as well as the dependency of structural response on the material properties and loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
23.
Behavior of unsaturated soils is influenced by many factors, and the influences of these factors are usually coupled together. Suction‐controlled triaxial (SCTX) tests are considered to allow researchers to investigate influences of individual variables on unsaturated soils under specified stress path with controls of stresses, pore water, and air pressures. In the past 50 years, SCTX testing method has been established as a standard approach to characterize constitutive behavior of unsaturated soils. Most important concepts for modern unsaturated soil mechanics were developed upon results from the SCTX tests. Among these, one of the most important contributions in the constitutive modeling of elasto‐plastic behavior for unsaturated soils is the Barcelona basic model (BBM) proposed by Alonso et al. in 1990. The BBM successfully explained many features of unsaturated soils and received extensive acceptance. However, the SCTX tests are designed based upon the divide‐and‐conquer approach in which an implicit assumption is used: soil behavior is stress‐path independent. However, it is well‐established that unsaturated soil behavior is elasto‐plastic and stress‐path dependent. It is found that the SCTX tests in fact cannot control the stress path of an unsaturated soil during loading. This incapability, in combination with complicated loading/collapse behavior of unsaturated soils, makes the SCTX tests for characterizing unsaturated soil questionable. This paper discusses the limitations of the SCTX tests in the characterization of unsaturated soils. A possible solution to the problem was proposed based on a newly developed modified state surface approach. The discussions are limited for isotropic conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
24.
The aim of this paper is to extend the generalized plasticity state parameter‐based model presented in part 1 to reproduce the hydro‐mechanical behavior of unsaturated soils. The proposed model is based on two pairs of stress–strain variables and a suitable hardening law taking into account the bonding—debonding effect of suction and degree of saturation. A generalized state parameter for unsaturated state is proposed to reproduce soil behavior using a single set of material parameters. Generalized plasticity gives a suitable framework to reproduce not only monotonic stress path but also cyclic behavior. The hydraulic hysteresis during a drying—wetting cycle and the void ratio effect on the hydraulic behavior is introduced. Comparison between model simulations and a series of experimental data available, both cohesive and granular, are given to illustrate the accuracy of the enhanced generalized plasticity equation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
25.
The paper describes and evaluates an incremental plasticity constitutive model for unsaturated, anisotropic, nonexpansive soils (CMUA). It is based on the modified Cam-Clay (MCC) model for saturated soils and enhances it by introducing anisotropy (via rotation of the MCC yield surface) and an unsaturated compressibility framework describing a double dependence of compressibility on suction and on the degree of saturation of macroporosity. As the anisotropic and unsaturated features can be activated independently, the model is downwards compatible with the MCC model. The CMUA model can simulate effectively: the dependence of compressibility on the level of developed anisotropy, uniqueness of critical state independent of the initial anisotropy, an evolving compressibility during constant suction compression, and a maximum of collapse. The model uses Bishop's average skeleton stress as its first constitutive variable, favouring its numerical implementation in commercial numerical analysis codes (eg, finite element codes) and a unified treatment of saturated and unsaturated material states.  相似文献   
26.
This paper presents a dynamic fully coupled formulation for saturated and unsaturated soils that undergo large deformations based on material point method. Governing equations are applied to porous material while considering it as a continuum in which the pores of the solid skeleton are filled with water and air. The accuracy of the developed method is tested with available experimental and numerical results. The developed method has been applied to investigate the failure and post‐failure behaviour of rapid landslides in unsaturated slopes subjected to rainfall infiltration using two different bedrock geometries that lie below the top soil. The models show different failure and post‐failure mechanisms depending on the bedrock geometry and highlight the negative effects of continuous rain infiltrations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
27.
This paper deals with the numerical implementation of a cap model for unsaturated soils. It provides a brief review of existing cap model approaches, based on which an improved model formulated in terms of generalised effective stress and matric suction is derived and described in detail. Although the proposed model is a multisurface plasticity model, it can efficiently be implemented using only single‐surface projections because of the smoothness of the model, which is obtained by construction. Numerical algorithms are provided for these single‐surface stress projections, using a single‐equation approach whenever possible. The robustness of the utilised single‐equation approaches is enhanced by proposing problem‐fitted start‐up procedures based on investigations of the nonlinear projection equations. A comparison of the model response with extensive material test data is used to validate the model and to demonstrate the robust application of the approach to silty sands and low to medium plasticity clays. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
28.
The paper presents an approach to predicting variation of a degree of saturation in unsaturated soils with void ratio and suction. The approach is based on the effective stress principle for unsaturated soils and several underlying assumptions. It focuses on the main drying and wetting processes and does not incorporate the effects of hydraulic hysteresis. It leads to the dependency of water retention curve (WRC) on void ratio, which does not require any material parameters apart from the parameters specifying WRC for the reference void ratio. Its validity is demonstrated by comparing predictions with the experimental data on four different soils taken over from the literature. Good correlation between the measured and predicted behaviour indirectly supports applicability of the effective stress principle for unsaturated soils. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
29.
Here we describe a new record of a sauropod dinosaur from the Lower Cretaceous (Hauterivian–Barremian) Rio Piranhas Formation, Sousa Basin, NE Brazil. Dinosaur fossil bones from this deposit were unknown until now. Thus, the discovery of a sauropod fibula from this locality is highly significant. Our discovery represents an indeterminate titanosaur and the earliest stratigraphic occurrence of this group in central Gondwana. When compared to chronocorrelate titanosaur trackmakers of this geological unit, this fossil specimen appears substantially smaller. Histological analysis of the fibula suggests that this is a relatively young individual (approximately 40–50% adult body size) that had passed its most rapid phase of early juvenile growth, but had not yet attained somatic maturity. Thus, the fibula recovered is from a young individual rather than from a small-bodied adult titanosaur.  相似文献   
30.
Most structures are subjected to more cyclic loads during their life time than static loads. These cyclic action could be a result of either natural or man-made activities and may lead to soil failure. In order to understand the response of the foundation and its interaction with these complex cyclic loadings, various researchers have over the years developed different constitutive models. Although a lot of research is being carried out on these relatively new models, little or no details exist in literature about the model-based identification of the cyclic constitutive parameters which to a large extent govern the quality of the model output. This could be attributed to the difficulties and complexities of the inverse modeling of such complex phenomena. A variety of optimisation strategies are available for the solution of the sum of least-squares problems as usually done in the field of model calibration. However, for the back analysis (calibration) of the soil response to oscillatory load functions, this article gives insight into the model calibration challenges and also puts forward a method for the inverse modeling of cyclic loaded foundation response such that high-quality solutions are obtained with minimum computational effort.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号