首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   1篇
  国内免费   22篇
地球物理   3篇
地质学   157篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2005年   8篇
  2004年   10篇
  2003年   10篇
  2002年   6篇
  2001年   6篇
  2000年   8篇
  1999年   7篇
  1998年   6篇
  1997年   11篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
排序方式: 共有160条查询结果,搜索用时 31 毫秒
91.
Oxide–sulphide–Fe–Mg–silicate and titanite–ilmenite textures as well as their mineral compositions have been studied in felsic and intermediate orthogneisses across an amphibolite (north) to granulite facies (south) traverse of lower Archean crust, Tamil Nadu, south India. Titanite is limited to the amphibolite facies terrane where it rims ilmenite or occurs as independent grains. Pyrite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade. Pyrrhotite is confined to the high‐grade granulites. Ilmenite is widespread throughout the traverse increasing in abundance with increasing metamorphic grade and occurring primarily as hemo‐ilmenite in the high‐grade granulite facies rocks. Magnetite is widespread throughout the traverse and is commonly associated with ilmenite. It decreases in abundance with increasing metamorphic grade. In the granulite facies zone, reaction rims of magnetite + quartz occur along Fe–Mg silicate grain boundaries. Magnetite also commonly rims or is associated with pyrite. Both types of reaction rims represent an oxidation effect resulting from the partial subsolidus reduction of the hematite component in ilmenite to magnetite. This is confirmed by the presence of composite three oxide grains consisting of hematite, magnetite and ilmenite. Magnetite and magnetite–pyrite micro‐veins along silicate grain boundaries formed over a wide range of post‐peak metamorphic temperatures and pressures ranging from high‐grade SO2 to low‐grade H2S‐dominated conditions. Oxygen fugacities estimated from the orthopyroxene–magnetite–quartz, orthopyroxene–hematite–quartz, and magnetite–hematite buffers average 2.5 log units above QFM. It is proposed that the trends in mineral assemblages, textures and composition are the result of an external, infiltrating concentrated brine containing an oxidizing component such as CaSO4 during high‐grade metamorphism later acted upon by prograde and retrograde mineral reactions that do not involve an externally derived fluid phase.  相似文献   
92.
In mafic granulites, garnet can form by reactions such as Opx + Pl = Cpx + Grt + Qtz; Opx + Pl = Grt + Qtz. As a result of isothermal decompression (ITD), garnet can then break down to a characteristic orthopyroxene-plagioclase symplectite. Mafic, iron-rich garnet-pyroxene granulite from the Guaxupé Massif has symplectite that formed by near-isothermal decompression, as a consequence of uplift of the granulite facies terrane. This symplectite was found to consist of vermicular clinopyroxene-orthopyroxene-plagioclase, with clinopyroxene clearly growing from the garnet that is breaking down, modal amounts of clinopyroxene being less than orthopyroxene. Electron probe analyses show clear differences between core (Cpx1), rim, and symplectite clinopyroxene (Cpx2). Considering also the presence of magnetite in the symplectite texture, garnet breakdown is thought to be better represented by a reaction such as Cpx1 + Grt + O2 = Cpx2 + Opx + Pl +Mt + Qtz.  相似文献   
93.
Calcsilicate granulites of probable Middle Proterozoic age ( c .1000–1100  Ma) in the vicinity of Battye Glacier, northern Prince Charles Mountains, East Antarctica, contain prograde metamorphic assemblages comprising various combinations of wollastonite, scapolite, clinopyroxene, An-rich plagioclase, calcite, quartz, titanite and, rarely, orthoclase, ilmenite, phlogopite and graphite. Comparison of the prograde assemblages with calculated and experimentally determined phase relations in the simple CaO–Al2O3–SiO2–CO2–H2O system suggests peak metamorphism at ≥835 °C in the presence (in wollastonite-bearing assemblages at least) of a CO2-bearing fluid ( X CO≥0.3) at a probable pressure of 6–7  kbar.
Well-preserved retrograde reaction textures represent: (1) breakdown of scapolite to anorthite+calcite±quartz; (2) formation of grossular–andradite garnet and, locally, (3) epidote, both principally by reactions involving scapolite breakdown products and clinopyroxene; (4) local coupled replacement of clinopyroxene and ilmenite by hornblende and titanite, respectively; and finally (5) local sericitization of prograde and retrograde plagioclase. These retrograde reactions are interpreted to be the result of cooling and variable infiltration by H2O-rich fluids, possibly derived from crystallizing pegmatitic intrusions and segregations that may be partial melts, which are common throughout the area.  相似文献   
94.
本文系统总结了90年代以来华北克拉通北缘高压粒岩的研究进展情况,简要介绍了华北克拉通北缘高压麻粒岩的空间分布、地质产状,概述了高压庥粒岩在原岩恢复、矿物组合及变质温压条件、矿物组合转化反应、成因假说和大地构造意义等方面的研究成果,指出高压麻粒岩在板块的构造/岩石圈研究领域的重要作用,并提出将来绎高压麻粒做进一步工作时需解决的首要问题。  相似文献   
95.
Metavolcanic rocks containing low-Ca amphiboles (gedrite, cummingtonite) and biotite can undergo substantial dehydration-melting. This is likely to be most prominent in Barrovian Facies Series (kyanite-sillimanite) and occurs at the same time as widespread metapelite dehydrationmelting. In lower pressure facies series, metavolcanics will be represented by granulites rich in orthopyroxene when dehydration occurs at much lower temperatures than melting. In higher pressure facies series it is not well known whether metavolcanic rocks dehydrate or melt at temperatures lower or similar to that of metapelites.  相似文献   
96.
华北克拉通两类早前寒武纪麻粒岩(HT-HP和HT-UHT)及其相关问题   总被引:12,自引:23,他引:12  
翟明国 《岩石学报》2009,25(8):1753-1771
华北克拉通广泛存在高级变质的早前寒武纪岩石,其中高温高压(HT-HP)麻粒岩和高温超高温(HT-UHT)麻粒岩近年来备受人们的关注,并将它们视为探讨早前寒武纪大陆演化的关键课题.HT-HP麻粒岩主要是含石榴石的基性麻粒岩,它们以透镜体或强烈变形的岩墙状出露于片麻岩中.HT-UHT麻粒岩主要是富铝的变质沉积岩系,俗称孔兹岩系,其中有含假蓝宝石和尖晶石等矿物组合,指示部分岩石的变质温度高于900~1000℃.本文探讨了这两类麻粒岩的出露状况、变质过程与变质历史、原岩与变质年龄.初步研究表明:①两类麻粒岩在变质的峰期温度和压力上有很大的重叠区间,都经历了一个近等温-略升温的降压变质;②两类麻粒岩很有可能在峰期和随后的降压变质阶段是同时的或有关联的;③HT-HP和HT-UHT麻粒岩的分布特征是线状或面状分布仍有待进一步查明;④高级变质的麻粒岩代表了华北克拉通的最下部地壳,它们变质的温压体系、岩石的刚性程度、分布特征、岩石组合以及抬升速率等具有与显生宙明显的不同.本文从而指出两类麻粒岩是否有成因联系是今后研究中非常值得注意的问题,深入研究将会对华北克拉通早期地壳演化、构造和动力学机制提供丰富的资料和证据.  相似文献   
97.
ABSTRACT

Different tectonic interpretations have been proposed for the various spatially associated Palaeoproterozoic granulite-facies lithologies (metasedimentary rocks, metabasites, and felsic granulites) from north-central part of the North China Craton, which hinges primarily on controversies about metamorphic histories of these granulites, especially on the timing of peak metamorphism. Published data exhibit two controversial peak metamorphic ages of 1950–1900 Ma and 1850–1800 Ma. We report here LA-ICPMS U–Pb zircon ages of seven representative granulite-facies samples of different lithologies to constrain the timing of metamorphism, and then discuss their geological significance. Most zircon grains from these rocks display weak core-and-rim structures and yield two comparable group metamorphic ages of 1970–1900 Ma and 1880–1790 Ma, although their formation ages vary from Neoarchaean to Palaeoproterozoic. The older population metamorphic ages are interpreted to approximate timing of high-pressure granulite-facies metamorphism, and the younger population ages as the approximate timing of intermediate- to low-pressure granulite-facies metamorphism. Combined with recent petrological studies, we propose these granulites have shared metamorphic histories at least since ~1970–1900 Ma, and they are probably formed in one single metamorphic cycle in response to crustal-scale subduction–collision–exhumation processes involved in Palaeoproterozoic mobile belt.  相似文献   
98.
大青山-乌拉山变质杂岩立甲子基性麻粒岩主要由角闪二辉麻粒岩、含榴角闪二辉麻粒岩和黑云角闪二辉麻粒岩所组成,并以变形岩墙和不规则透镜体形式赋存于富铝片麻岩和花岗质片麻岩之中.立甲子基性麻粒岩中变质锆石含有单斜辉石(Cpx)+角闪石(Amp)+斜长石(Pl)+磷灰石(Ap)的包体矿物,与寄主岩石——基性麻粒岩矿物组合及其化学成分十分一致,相应的207 pb/206 Pb表面年龄变化于1933±39Ma ~ 1834±40Ma,加权平均年龄为1892±7Ma(MSWD =0.50,n=46),应代表立甲子基性麻粒岩原岩经历中低压麻粒岩相的变质时代.在变质过程中,以大离子亲石元素(K、Na、Sr、Rb)为代表的活动元素发生了显著的改变;而高场强元素(Nb、Zr、Ti)和稀土元素基本无变化,保持稳定.立甲子基性麻粒岩原岩属于拉斑玄武质岩石系列,其SiO2集中变化于45.58% ~51.40%,Mg#值集中介于41 ~54之间;在球粒陨石标准化稀土配分图中,立甲子基性麻粒岩具有平坦型的稀土配分曲线特征((La/Yb)cN=1.30~1.51),Eu异常不明显(Eu/Eu*=0.93~1.04).与显生宙岛孤拉斑玄武岩类似,立甲子基性麻粒岩所有样品皆具有Nb、Zr、Ti负异常特征.综合分析认为,立甲子基性麻粒岩原岩形成于2450~1930Ma,并于~1900Ma经历中低压麻粒岩相变质作用的改造,其主量元素和微量元素组成具有岛弧拉斑玄武质岩石的地球化学特征,其原岩可能是板块汇聚动力学背景下,岛弧构造环境中形成的辉长岩或辉绿岩.  相似文献   
99.
Graphite from deposits occurring in the high-grade metamorphic rocks and their larteritized equivalents of the Thodupuzha-Kanjirappally Belt in Madurai Granulite Block, southern India is structurally fully ordered (crystallite size, Lc(002) ranging from 469 to 749 Å), possess high degree of graphitization (DG value ranging from 105 to 267 Å) and reflect crystallization at high temperature (700±100°C). Raman spectra of graphite display profiles corresponding to high crystallinity and high structural ordering. The high temperature crystallinity characteristics of graphite were not obliterated during retrogression of granulites to amphibolite facies gneisses. Preliminary carbon stable isotope results show a spread in isotope values from —11.8 to —26.8 %, which suggest more than one sources for carbon. The lighter carbon isotope values are suggestive of biogenic origin, whereas the heavier ones are probably fluid precipitated graphite.  相似文献   
100.
The In Ouzzal Al–Mg granulites are found within sedimentary units deposited after 2.7 Ga, the whole association being metamorphosed under extreme temperature conditions (c. 1000 °C) at 2 Ga. The Al–Mg granulites are interlayered with other metasediments, including metapelites, quartzites and magnetite-bearing quartzites, forsterite-spinel marbles, and a few meta-igneous rocks (mainly pyroxenites). They do not occur at a specific position in the sedimentary suite, and they do not reflect any particular structural control. The major and trace element compositions of Al–Mg granulites (especially the high Cr, Ni, Co contents) show that their peculiar ‘refractory’ chemistry is more compatible with premetamorphic sedimentary characteristics rather than with metasomatic, metamorphic or partial melting processes. Sedimentary admixtures of a common mature detrital component coming from the weathering of the local acidic igneous crustal protoliths (normal pelitic component) with an extremely immature component derived from reworking of basic/ultrabasic lithologies (Al–Mg–Cr–Co–Ni–rich chloritic component) is consistent with the geochemistry of such rocks. As in other instances, the quartz-garnet oxygen isotopic thermometer here records an apparent temperature close to the peak metamorphism (c. 1000 °C). Although the persistence of pre-existing δ18O variations on a small scale during the metamorphism does not support a major pervasive fluid flow during metamorphism, it does not rule out the presence of syn- to post-metamorphic CO2. The low δ18O (c.+ 5 to + 6‰) of the most typical Al–Mg granulites indicate that the ‘chloritic component’ in these rocks was derived from hydrothermally altered mafic/ultramafic protoliths rather than dominantly from palaeosols. It is suggested that the presence of such Al–Mg–Cr–Co–Ni–rich sediments is indirect evidence for the presence of greenstone belts in the local crust of the In Ouzzal at 2.6–2.7 Ga.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号