首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   1篇
  国内免费   22篇
地球物理   3篇
地质学   157篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   5篇
  2011年   3篇
  2010年   1篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   4篇
  2005年   8篇
  2004年   10篇
  2003年   10篇
  2002年   6篇
  2001年   6篇
  2000年   8篇
  1999年   7篇
  1998年   6篇
  1997年   11篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   5篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1985年   3篇
  1984年   1篇
排序方式: 共有160条查询结果,搜索用时 31 毫秒
61.
Abstract Orthopyroxene-bearing migmatites, exposed at the summit of Cone Peak in the Santa Lucia Range, California, offer an opportunity to explore potential links between granulite facies metamorphism and migmatite formation. Geothermobarometry indicates that the metamorphic temperatures and pressures were in the approximate ranges of 700–750° C and 7.0–7.5 kbar. The rocks at the summit comprise three domains: relatively coarse-grained, leucocratic veins; relatively fine-grained, biotite-enriched zones at the margins of the veins; and a biotite–hornblende-bearing host rock. Orthopyroxene is concentrated in the veins, which have also the highest ratio of anhydrous to hydrous minerals of the three rock types. The composition of the veins, together with their textures and modes, suggest that they formed through anatexis involving a dehydration-melting reaction which consumed hornblende and produced orthopyroxene. Variability in mineralogy and composition indicates that there was some local migration of magma along the veins before their final solidification. The biotite-enriched zones formed either by the concentration of residual biotite at the margins of the vein, or through the metasomatic conversion of hornblende (and/or pyroxene) to biotite, or by a combination of the two processes. Significant differences in the chemistry of the neosome (vein + biotite-enriched zone) and the host rock rule out simple dehydration melting in a local closed system. The model that explains best the mineralogical and chemical patterns involves triggering of melting by an influx of a low- a H2O mixed fluid which added K and Si to and removed Ca from the neosome.  相似文献   
62.
对河南桐柏地区麻粒岩及其周围以前被认为是片麻岩的岩石从野外特征、结构构造、矿物成分、化学成分及峰期变质条件上进行比较,认为它们均相同。似层状、透镜状麻粒岩间以前被认为是高度风化片麻岩的岩石仍是麻粒岩,这是后期应力作用产生差异变形、退变质及风化作用的结果。这种变化不能等同于麻粒岩退变质为片麻岩。因此,桐柏麻粒岩的北侧围岩是与其呈断层接触的大理岩,南侧围岩为郭庄组上段花岗质片麻岩,麻粒岩构成一个约0.5km~2.0km宽的变质带。这对探讨桐柏麻粒岩的形成和演化具有重要意义。  相似文献   
63.
青藏高原班公湖-怒江结合带内中东段八宿、安多、蓬错西等地已有高压-超高压变质岩的报道,然而西段至今尚没有发现类似岩石出露。在班公湖-怒江西段改则洞错地区舍拉玛沟中发现高压麻粒岩(可能是退变榴辉岩),岩石呈透镜状、似层状或块状产于斜长角闪岩及变质辉长岩中,详细的岩相学及矿物化学研究确认,早期矿物组合主要为石榴子石、单斜辉石及斜长石(大部分钠黝帘石化),后期发生了较强烈的退变质作用,矿物组合为角闪石和斜长石,发育典型的"白眼圈"结构。利用LA-ICP-MS锆石U-Pb方法获得高压麻粒岩的原岩时代为254±2Ma,指示班公湖-怒江洋盆打开的时限可以追溯到晚二叠世。地质温压计估算结果表明,高压麻粒岩相变质作用发生的温度和压力条件为780~900℃和13~16k Pa,角闪岩相变质作用发生的温度和压力条件为430~480℃和4.5~5.2k Pa,极有可能是班公湖-怒江特提斯洋壳发生高压麻粒岩相(甚至达到榴辉岩相)变质作用的产物。它的发现说明在班公湖-怒江结合带内部存在高压变质带,可能是大洋深俯冲的产物,这对研究青藏高原特提斯洋的形成演化具有重要意义。  相似文献   
64.
Granulites exposed in the Reinbolt Hills, East Antarctica, are part of the extensive Late Proterozoic granulite complex of East Antarctica, which includes the Rauer Group to the east and the northern Prince Charles Mountains to the west. The deformation history includes three pervasive deformation phases. No chemical or mineralogical distinction between these phases has been detected and this is interpreted to be the result of complete re-equilibration at the end of the third deformation phase. Two late deformation phases post-date the metamorphism and record a medium-temperature cooling path. A short segment of the P–T path of these rocks was inferred from mineral reactions that occurred during these late deformation phases. The path passes from 800°C, 7 kbar to 690°C, 5 kbar, indicating strong decompression, which is typical of a thrust-dominated crustal thickening followed by rapid erosion or extensional collapse.  相似文献   
65.
The integration of new and published geochronologic data with structural, magmatic/anatectic and pressure–temperature (P–T) process information allow the recognition of high-grade polymetamorphic granulites and associated high-grade shear zones in the Central Zone (CZ) of the Limpopo high-grade terrain in South Africa. Together, these two important features reflect a major high-grade D3/M3 event at ~ 2.02 Ga that overprinted the > 2.63 Ga high-grade Neoarchaean D2/M2 event, characterized by SW-plunging sheath folds. These major D2/M2 folds developed before ~ 2.63 Ga based on U–Pb zircon age data for precursors to leucocratic anatectic gneisses that cut the high-grade gneissic fabric. The D3/M3 shear event is accurately dated by U–Pb monazite (2017.1 ± 2.8 Ma) and PbSL garnet (2023 ± 11 Ma) age data obtained from syntectonic anatectic material, and from sheared metapelitic gneisses that were completely reworked during the high-grade shear event. The shear event was preceded by isobaric heating (P = ~ 6 kbar and T = ~ 670–780 °C), which resulted in the widespread formation of polymetamorphic granulites. Many efforts to date high-grade gneisses from the CZ using PbSL garnet dating resulted in a large spread of ages (~ 2.0–2.6 Ga) that reflect the polymetamorphic nature of these complexly deformed high-grade rocks.  相似文献   
66.
The Winding Stair Gap in the Central Blue Ridge province exposes granulite facies schists, gneisses, granofelses and migmatites characterized by the mineral assemblages: garnet–biotite–sillimanite–plagioclase–quartz, garnet–hornblende–biotite–plagioclase–quartz ± orthopyroxene ± clinopyroxene and orthopyroxene–biotite–quartz. Multiple textural populations of biotite, kyanite and sillimanite in pelitic schists support a polymetamorphic history characterized by an early clockwise P–T path in which dehydration melting of muscovite took place in the stability field of kyanite. Continued heating led to dehydration melting of biotite until peak conditions of 850 ± 30 °C, 9 ± 1 kbar were reached. After equilibrating at peak temperatures, the rocks underwent a stage of near isobaric cooling during which hydrous melt ± K‐feldspar were replaced by muscovite, and garnet by sillimanite + biotite + plagioclase. Most monazite crystals from a pelitic schist display patchy zoning for Th, Y and U, with some matrix crystals having as many as five compositional zones. A few monazite inclusions in garnet, as well as Y‐rich cores of some monazite matrix crystals, yield the oldest dates of c. 500 Ma, whereas a few homogeneous matrix monazites that grew in the main foliation plane yield dates of 370–330 Ma. Culling and analysis of individual spot dates for eight monazite grains yields three age populations of 509 ± 14 Ma, 438 ± 5 Ma and 360 ± 5 Ma. These data suggest that peak‐temperature metamorphism and partial melting in the central Blue Ridge occurred during the Salinic or Taconic orogeny. Following near isobaric cooling, a second weaker thermal pulse possibly related to intrusion of nearby igneous bodies resulted in growth of monazite c. 360 Ma, coinciding with the Neoacadian orogeny.  相似文献   
67.
To constrain the tectonic history of the Pan-African belt in Tanzania, we have studied the P–T evolution of granulites from northern and eastern Tanzania representative for a large part of the southern Pan-African belt of East Africa (e.g. Pare, Usambara, Ukaguru and Uluguru Mountains). Thermobarometry (conventional and multireaction equilibria) on enderbites and metapelites gives 9.5–11 kbar and 810±40 °C during peak metamorphism at 650–620 Ma. This is consistent with the occurrence of both sillimanite and kyanite in metapelites and of the high-P granulite facies assemblage garnet–clinopyroxene–quartz in mafic rocks. Peak metamorphic conditions are surprisingly similar over a very large area with N-S and E-W extents of about 700 and 200 km respectively. The prograde metamorphic evolution in the entire area started in the kyanite field but evolved mainly within the sillimanite stability field. The retrograde P–T evolution is characterized by late-stage kyanite in metapelites and garnet–clinopyroxene coronas around orthopyroxene in meta-igneous rocks. This is in agreement with thermobarometric results and isotopic dating, indicating a period of nearly isobaric and slow cooling prior to tectonic uplift. The anticlockwise P–T path could have resulted from magmatic underplating and loading of the lower continental crust which caused heating and thickening of the crust. Substantial postmetamorphic crustal thickening of yet unknown age (presumably after 550 Ma) led subsequently to the exhumation of high-P granulites over a large area. The results are consistent with formation of the Pan-African granulites at an active continental margin where tonalitic intrusions caused crustal growth and heating 70–100 Ma prior to continental collision. The P–T–t path contradicts recent geodynamic models which proposed tectonic crustal thickening due to continental collision between East and West Gondwana as the cause of granulite formation in the southern part of the Pan-African belt.  相似文献   
68.
利用傅里叶变换红外光谱(FTIR)和电子探针(EMP)分析了早古生代的松树沟麻粒岩和桐柏麻粒岩地体以及古元古代的莒南麻粒岩包体(其寄主岩石为新生代玄武岩)中长石的水含量和化学成分。结果显示,麻粒岩中的长石均含有以OH和H2O形式存在的结构水;3个地点的长石水含量分别为465×10-6~733×10-6、210×10-6~993×10-6和717×10-6~1 239×10-6。对比前人报道的中生代(道县和汉诺坝包体)和古元古代(女山包体、汉诺坝地体)的麻粒岩研究结果,发现早古生代样品和古元古代样品中长石的水含量都比中生代样品明显的高,而早古生代和古元古代样品之间却没有差别,指示了中国东部下地壳在中生代之前更加富水。  相似文献   
69.
胶北高级变质基底中高压基性麻粒岩主要由石榴基性麻粒岩、石榴紫苏麻粒岩和石榴斜长角闪岩所组成,并主要以不规则透镜体或变形岩墙的形式赋存于TTG质片麻岩或花岗质片麻岩之中。胶北高压基性麻粒岩在变质过程中,以大离子亲石元素(K、Na、Sr、Rb)为代表的活动元素发生了显著的改变;而高场强元素(Th、Nb、Zr、Ti)和稀土元素基本无变化,保持稳定。胶北高压基性麻粒岩属于拉斑玄武质岩石系列,其SiO2集中变化于44.04%~53.54%,Mg#值集中变化于35~60之间;稀土配分曲线不仅存在总量较低的平坦型(ΣREE=21.13×10-6~78.49×10-6,(La/Yb)CN=1.03~2.86),也有轻稀土相对富集且含量相对较高的右倾型(92.74×10-6~133.5×10-6,(La/Yb)CN=2.93~4.56),Eu异常不明显(Eu/Eu*=0.93~1.04)。高压基性麻粒岩Cr、Ni含量变化较大,但与MgO含量具有很好的相关性。与显生宙岛弧拉斑玄武岩一样,胶北高压基性麻粒岩几乎所有样品皆具有Nb、Zr、Ti负异常,且εNd(t)为正值(+2.70~+4.77)。综合分析认为,胶北高压基性麻粒岩具有岛弧拉斑玄武质岩石的地球化学特征,其原岩可能为弧后扩张背景下侵入的辉长岩或辉绿岩,以及相应喷出的基性火山岩。  相似文献   
70.
Corundum+quartz-bearing assemblages occur in small lenses in granulite facies metapelites in Rayagada, north-central part of the Eastern Ghats Granulite Belt, India. Corundum porphyroblasts and quartz coexist with porphyroblastic almandine-rich garnet, hercynite spinel, ilmenite and magnetite. Corundum and quartz are separated by sillimanite or a composite corona consisting of sillimanite and garnet, whereas corundum shows sharp grain boundaries with spinel, ilmenite and magnetite. Porphyroblastic corundum contains prismatic sillimanite inclusions in which irregularly shaped quartz is enclosed. Two distinct reactions are inferred from the textural features: corundum+quartz=sillimanite and spinel+quartz=garnet+sillimanite. From the petrographical features, we infer that corundum–quartz–garnet–spinel was the peak metamorphic assemblage. Although large uncertainties exist regarding the positions of the respective reactions in P–T  space, from several published experimental results and theoretical calculations a peak metamorphic condition of 12  kbar and 1100  °C is estimated as the lower stability limit of the corundum–quartz assemblage. Decompression from the peak P–T  condition to c .  9  kbar, 950  °C is inferred.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号