首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6721篇
  免费   1312篇
  国内免费   1069篇
测绘学   125篇
大气科学   604篇
地球物理   2514篇
地质学   3551篇
海洋学   839篇
天文学   49篇
综合类   295篇
自然地理   1125篇
  2024年   20篇
  2023年   69篇
  2022年   165篇
  2021年   235篇
  2020年   266篇
  2019年   272篇
  2018年   250篇
  2017年   275篇
  2016年   260篇
  2015年   268篇
  2014年   399篇
  2013年   542篇
  2012年   329篇
  2011年   396篇
  2010年   361篇
  2009年   437篇
  2008年   513篇
  2007年   428篇
  2006年   459篇
  2005年   338篇
  2004年   319篇
  2003年   292篇
  2002年   268篇
  2001年   243篇
  2000年   222篇
  1999年   227篇
  1998年   192篇
  1997年   171篇
  1996年   144篇
  1995年   119篇
  1994年   104篇
  1993年   107篇
  1992年   88篇
  1991年   69篇
  1990年   68篇
  1989年   44篇
  1988年   42篇
  1987年   18篇
  1986年   14篇
  1985年   11篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1978年   16篇
  1977年   5篇
  1976年   1篇
  1972年   1篇
  1954年   3篇
排序方式: 共有9102条查询结果,搜索用时 296 毫秒
301.
Alluvial fans develop their semi‐conical shape by quasi‐cyclic avulsions of their geomorphologically active sector from a fixed fan apex. On debris‐flow fans, these quasi‐cyclic avulsions are poorly understood, partly because physical scale experiments on the formation of fans have been limited largely to turbidite and fluvial fans and deltas. In this study, debris‐flow fans were experimentally created under constant extrinsic forcing, and autogenic sequences of backfilling, avulsion and channelization were observed. Backfilling, avulsion and channelization were gradual processes that required multiple successive debris‐flow events. Debris flows avulsed along preferential flow paths given by the balance between steepest descent and flow inertia. In the channelization phase, debris flows became progressively longer and narrower because momentum increasingly focused on the flow front as flow narrowed, resulting in longer run‐out and deeper channels. Backfilling commenced when debris flows reached their maximum possible length and channel depth, as defined by channel slope and debris‐flow volume and composition, after which they progressively shortened and widened until the entire channel was filled and avulsion was initiated. The terminus of deposition moved upstream because the frontal lobe deposits of previous debris flows created a low‐gradient zone forcing deposition. Consequently, the next debris flow was shorter which led to more in‐channel sedimentation, causing more overbank flow in the next debris flow and resulting in reduced momentum to the flow front and shorter runout. This topographic feedback is similar to the interaction between flow and mouth bars forcing backfilling and transitions from channelized to sheet flow in turbidite and fluvial fans and deltas. Debris‐flow avulsion cycles are governed by the same large‐scale topographic compensation that drives avulsion cycles on fluvial and turbidite fans, although the detailed processes are unique to debris‐flow fans. This novel result provides a basis for modelling of debris‐flow fans with applications in hazards and stratigraphy.  相似文献   
302.
Controlled laboratory experiments reveal that the lower part of turbidity currents has the ability to enter fluid mud substrates, if the bed shear stress is higher than the yield stress of the fluid mud and the density of the turbidity current is higher than the density of the substrate. Upon entering the substrate, the turbidity current either induces mixing between flow‐derived sediment and substrate sediment, or it forms a stable horizontal flow front inside the fluid mud. Such ‘intrabed’ flow is surrounded by plastically deformed mud; otherwise it resembles the front of a ‘bottom‐hugging’ turbidity current. The ‘suprabed’ portion of the turbidity current, i.e. the upper part of the flow that does not enter the substrate, is typically separated from the intrabed flow by a long horizontal layer of mud which originates from the mud that is swept over the top of the intrabed flow and then incorporated into the flow. The intrabed flow and the mixing mechanism are specific types of interaction between turbidity currents and muddy substrates that are part of a larger group of interactions, which also include bypass, deposition, erosion and soft sediment deformation. A classification scheme for these types of interactions is proposed, based on an excess bed shear stress parameter, which includes the difference in the bed shear stress imposed by the flow and the yield stress of the substrate and an excess density parameter, which relies on the density difference between the flow and the substrate. Based on this classification scheme, as well as on the sedimentological properties of the laboratory deposits, an existing facies model for intrabed turbidites is extended to the other types of interaction involving soft muddy substrates. The physical threshold of flow‐substrate mixing versus stable intrabed flow is defined using the gradient Richardson number, and this method is validated successfully with the laboratory data. The gradient Richardson number is also used to verify that stable intrabed flow is possible in natural turbidity currents, and to determine under which conditions intrabed flow is likely to be unstable. It appears that intrabed flow is likely only in natural turbidity currents with flow velocities well below ca 3·5 m s?1, although a wider range of flows is capable of entering fluid muds. Below this threshold velocity, intrabed flow is stable only at high‐density gradients and low‐velocity gradients across the upper boundary of the turbidity current. Finally, the gradient Richardson number is used as a scaling parameter to set the flow velocity limits of a natural turbidity current that formed an inferred intrabed turbidite in the deep‐marine Aberystwyth Grits Group, West Wales, United Kingdom.  相似文献   
303.
During the deposition of the Chang-7 (Ch-7) and Chang-6 (Ch-6) units in the Upper Triassic, gravity flows were developed widely in a deep lake in the southwestern Ordos Basin, China. Based on cores, outcrops, well-logs and well-testing data, this paper documents the sedimentary characteristics of the gravity-flow deposits and constructs a depositional model. Gravity-flow deposits in the study area comprise seven lithofacies types, which are categorised into four groups: slides and slumps, debris-flow-dominated lithofacies, turbidity-current-dominated lithofacies, and deep-water mudstone-dominated lithofacies. The seven lithofacies form two sedimentary entities: sub-lacustrine fan and the slump olistolith, made up of three and two lithofacies associations, respectively. Lithofacies association 1 is a channel–levee complex with fining-/thinning-upward sequences whose main part is characterised by sandy debris flow-dominated, thick-bedded massive sandstones. Lithofacies association 2 represents distributary channelised lobes of sub-lacustrine fans, which can be further subdivided into distributary channel, channel lateral margin and inter-channel. Lithofacies association 3 is marked by non-channelised lobes of sub-lacustrine fans, including sheet-like turbidites and deep-lake mudstones. Lithofacies association 4 is represented by proximal lobes of slump olistolith, consisting of slides and slumps. Lithofacies association 5 is marked by distal lobes of slump olistolith, comprising tongue-shaped debris flow lobes and turbidite lobes. It is characterised by sandy debris flow, muddy debris flow-dominated sandstone and sandstone with classic Bouma sequences. Several factors caused the generation of gravity flows in the Ordos Basin, including sediment supply, terrain slope and external triggers, such as volcanisms, earthquakes and seasonal floods. The sediment supply of sub-lacustrine fan was most likely from seasonal floods with a high net-to-gross and incised channels. Triggered by volcanisms and earthquakes, the slump olistolith is deposited by the slumping and secondary transport of unconsolidated sediments in the delta front or prodelta with a low net-to-gross and no incised channels.  相似文献   
304.
为适应中国民用航天遥感从科学试验向业务服务模式转变,更好地探索、了解与解决应用需求与航天遥感系统对接等方面遇到的技术问题,促进航天遥感统筹协调可持续发展,中国适时于2004年成立了国家航天局航天遥感论证中心。10余年来,论证中心以航天遥感系统为研究对象,系统开展了面向应用的航天遥感科学论证概念、理论方法、技术工程与应用研究。本文是论证中心团队长期从事航天遥感科学论证研究与实践的系统总结,介绍了遥感论证初步认知、遥感论证关注问题、遥感论证理论体系与模型方法集、遥感论证能力建设及遥感论证实践等方面内容,给出了遥感论证定义并详细分析了研究范围和内容,提出了由知识维、进程维和逻辑维所组成的遥感论证作用域3维空间结构,指出社会发展加快和信息化水平提高,带动整个航天遥感数据信息链向更大规模、更短响应时间周期、更综合数据集成、更高数据质量、更加智能化方向发展,航天遥感系统将进入新的"智慧遥感"发展阶段。得益于十余年来中国民用航天快速发展,我们经历了风云三号新型载荷校飞、多角度多光谱偏振遥感器论证、环境星应用工程论证等实践,取得了多方面理论方法的突破,并应用到2030民用航天发展规划、高分辨率对地观测系统、国家自然灾害空间信息基础设施、国家民用空间基础设施中长期发展、2030中国综合地球观测系统规划等论证当中。经过不断实践,快速迭代,形成了遥感论证理论体系及相应的十大模型方法,包括遥感信息流模型、遥感信息特征模型、遥感信息应用模型、遥感信息量分析模型、遥感数据工程模型、航天遥感系统结构模型、航天遥感系统状态描述模型、航天遥感系统质量模型、航天遥感系统发展动力模型及能力体系模型。这些模型方法全面反映了航天遥感系统特征、结构、状态、发展动力、条件等,可广泛用于对航天遥感系统进行顶层设计、规划、考察、分析、评价、预测,并开展实践探索。  相似文献   
305.
Overlapping gravity accumulation bodies were formed on the northwestern steep slope of the Shuangyang Formation in the Moliqing fault depression of northeast China. This study analyzed in detail the spatial distribution of the lithofacies and lithofacies associations of these accumulation bodies based on more than 600 m of core sections, and summarized 12 major types of lithofacies and three types of lithofacies associations: (1) the proximal zone consists of gravelly debris flows dominated by alluvial channel conglomerates; (2) the middle zone is dominated by various gravity flow deposits and traction flow deposits; and (3) the distal zone is dominated by mudstones with intercalations of sandy debris and turbidites. Combining with the grain size cumulative probability curves analysis, we determined the transformation of debris flows to sandy debris flows and to turbidity currents in the slope zone of the basin margin, and further proposed a lacustrine slope apron model that is characterized by (1) an inconstant multiple source (line source), (2) an alternation of gravity flow deposits and traction flow deposits dominated by periodical changes in a source flood flow system, and (3) the transformation of sandy debris flow deposits into distal turbidity current deposits. This sedimentary model may be applicable to other fault depressions for predicting reservoir distribution.  相似文献   
306.
The volume fraction of the solid and liquid phase of debris flows,which evolves simultaneously across terrains,largely determines the dynamic property of debris flows. The entrainment process significantly influences the amplitude of the volume fraction. In this paper,we present a depth-averaged two-phase debris-flow model describing the simultaneous evolution of the phase velocity and depth,the solid and fluid volume fractions and the bed morphological evolution. The model employs the Mohr–Coulomb plasticity for the solid stress,and the fluid stress is modeled as a Newtonian viscous stress. The interfacial momentum transfer includes viscous drag and buoyancy. A new extended entrainment rate formula that satisfies the boundary momentum jump condition(Iverson and Ouyang,2015) is presented. In this formula,the basal traction stress is a function of the solid volume fraction and can take advantage of both the Coulomb and velocity-dependent friction models. A finite volume method using Roe's Riemann approximation is suggested to solve the equations. Three computational cases are conducted and compared with experiments or previous results. The results show that the current computational model and framework are robust and suitable for capturing the characteristics of debris flows.  相似文献   
307.
长江中游荆江的水沙通过三口洪道分流入洞庭湖,三口分流是荆江-洞庭湖关系调整的驱动因子,为揭示其变化特征及三峡工程运用的影响,基于大量的原观数据,系统研究了近60年三口分流比的变化过程,提出其显著调整特征及诱发因素,引入径流还原计算方法,量化了三峡水库不同运用方式对三口分流量的影响幅度。结果表明:①特大洪水及重大人类活动等诱发因素作用下,三口分流比出现4~5年持续性减小的趋势调整期,之后进入分流比稳定恢复的平衡调整期;②2003-2014年,三峡水库汛前枯水补偿调度使得三口分流量年均增加8.000亿m3,汛后蓄水使得三口分流量年均减小29.00亿m3,对三口分流综合影响量为年均减少21.00亿m3,占同期三口年均分流量的4.29%。  相似文献   
308.
李英玉  赵坚  吕辉  陈斌 《水科学进展》2016,27(3):423-429
为揭示低温水影响下的河岸带潜流层的温度场和流场分布特性,利用野外水温水位实时监测试验,研究河岸带潜流层温度场在不同季节、不同空间位置上的分布特性,并利用水温资料计算获得地下水流速。结果表明:河岸带潜流层温度场在夏季和冬季分别呈现出"上暖下冷"和 "上冷下暖"的温度分层现象;通过对温度示踪方法的4种计算方法进行分析比较,得到Hatch相位法计算的地下水流速具有较高的准确性,在2014年12月15—31日时段内流速大小为1.03×10-4~7.96×10-4m/s,在空间上,断面深度增加,地下水流速降低,且不同深度流速曲线接近平行。  相似文献   
309.
对当前坡面汇流计算方法的研究进展进行了较为系统的总结与分析,并对坡面汇流的非线性效应以及城市低影响开发中的雨水入渗与蓄集对坡面汇流的控制作用进行了简要分析。从模型简单实用的角度出发,认为以流域时间-面积关系与线性水库相串联的ModClark法等为代表的概念性分布式坡面汇流模型具有良好的发展前景;考虑到基于等流时单元的变动等流时线法在反映雨强非线性影响中存在的问题,认为根据水文响应单元在不同雨强条件下汇流时间的变化,调整其汇流参数以反映坡面汇流的非线性效应,对于流域坡面汇流的分布式模拟更具有实际意义;针对目前低影响开发设施长时间序列大空间尺度的室外降雨径流监测资料普遍较为缺乏的现状,给出了后期应积极选择合适的技术以加强低影响开发性能监测工作的建议。  相似文献   
310.
Review of Earth Critical Zone Research   总被引:2,自引:0,他引:2  
Since the Earth Critical Zone put forward by National Research Council of America in 2001, it has got a lot of attention and some significant progresses have been made. This paper summarized those Earth Critical Zone projects and related research plans organized and implemented by the United States of America, Germany, Australia, France, China and the European Union, as well as main scientific problems and future development direction in the study of Earth Critical Zone. According to research status of China, the four main research contents should be strengthened including structure, formation and evolution mechanism of Earth Critical Zone, the coulpling interaction mechanism between migration and transformation of material and multi-processes, sevice function and evolution features of Earth Critical Zone and its support and effect on sustainable development, model simulation of process and system of Earth Critical Zone. In addition, our country should actively conduct cooperation and communication with the advanced countries, and enhance our involvement in international key research plans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号