首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   5篇
  国内免费   10篇
地质学   47篇
自然地理   1篇
  2022年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1992年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有48条查询结果,搜索用时 31 毫秒
31.
介绍了凿岩钻进自动化的重要性,阐述了钻进自动化的发展历程,分析钻车自动化的发展现状,指出了自动钻车科研工作的不足以及未来的发展方向。  相似文献   
32.
Three-dimensional (3D) finite element analyses have been performed to study the behaviour of a single pile and 3 × 3 and 5 × 5 pile groups during open face tunnelling in stiff clay. Several governing factors, such as tunnelling-induced ground and pile settlement, axial pile force changes and shear transfer mechanism at the pile–soil interface, have been studied in detail. Tunnelling resulted in the development of pile head settlement larger than the free-field soil surface settlement. In addition, axial force distributions along the pile change substantially due to changes in the shear transfer between the pile and the soil next to the pile, which triggers tunnelling-induced tensile forces in the piles with tunnel advancement. It was found that the relative displacements and the normal stresses at the pile–soil interface drastically affected shear transfer. The extent of slip length along a pile increased as the tunnelling proceeded. The apparent allowable pile capacity was reduced by up to approximately 42% due to the development of tunnelling-induced pile head settlement. Shear stress on the pile was increased for most of the pile depth with tunnel advancement, which was associated with changes in soil stresses and ground deformation, and hence, the axial pile force was gradually reduced with tunnel advancement, indicating the development of tunnelling-induced tensile pile force. The maximum tunnelling-induced tensile force on the pile was approximately 0.33Pa, where Pa is the allowable pile capacity applied to the pile head prior to tunnel excavation. The range affected by tunnelling in the longitudinal direction may be identified as approximately −2D  +(1.5–2.0D), where D is the tunnel diameter, from the pile centre (behind and ahead of the pile axis), in terms of pile settlement and axial pile force changes based on the analysis conditions assumed in the current study. Larger pile head settlements and smaller changes in axial pile forces were computed for piles that were part of groups. It has been found that the serviceability of piles experiencing adjacent tunnelling is more affected by pile settlement than by axial pile force changes, in particular for piles inside groups. The magnitude of the tunnelling-induced excess pore pressure was small and may not substantially affect pile behaviour.  相似文献   
33.
Summary  This paper is a contribution to the study of tunnelling in difficult conditions, with attention paid to large time-dependent deformations, which may develop either during construction, causing instabilities of the tunnel heading and of the face, or during the service life of the tunnel. Under these circumstances the construction costs may rise due to the delays in excavation time, the stabilisation and heavy support measures that need be adopted. Following a review of characterisation and modelling of time-dependent behaviour in rock, the mechanical behaviour of Clay Shales (CS), a structurally complex formation of the Apennines (Italy), is described. Then, the key factors involved in the selection of the constitutive model for CS are identified. Two constitutive models are selected and discussed and their specific material parameters determined. A case study of a large size tunnel is presented where numerical modelling by the finite difference method is carried out. The results of modelling are compared with the monitoring data in terms of radial convergence of the tunnel and extrusion of the tunnel face.  相似文献   
34.
In densely built areas, the development of underground transportation systems often involves twin tunnels, which are sometimes unavoidably constructed adjacent to existing piled foundations. Because soil stiffness degrades with induced stress release and shear strain during tunnelling, it is vital to investigate the pile responses to subsequent tunnels after the first tunnel in a twin-tunnel transportation system. To gain new insights into single pile responses to side-by-side twin tunnelling in saturated stiff clay, a three-dimensional coupled-consolidation numerical parametric study is carried out. An advanced hypoplasticity (clay) constitutive model with small-strain stiffness is adopted. The effects of each tunnel depth relative to pile are investigated by simulating the twin tunnels either near the mid-depth of the pile shaft or adjacent to or below the pile toe. The model parameters are calibrated against centrifuge test results in stiff clay reported in literature. It is found the second tunnelling in each case resulted in larger settlement than that due to the first tunnelling with a maximum percentage difference of 175% in the case of twin tunnelling near the mid-depth of the shaft. This is because of the degradation of clay stiffness around the pile during the first tunnelling. Conversely, the first tunnelling-induced bending moment was reduced substantially during the second tunnelling. The most critical location of twin tunnels relative to the pile was found to be the tunnels below the pile toe. This is because the entire pile was located within the major influence zone of the twin tunnelling. Two distinct load transfer mechanisms can be identified in the pile, namely downward load transfer in case of tunnels near mid-depth of the pile shaft and next to the pile toe and upward load transfer in case of twin-tunnelling below the pile toe. These two transfer mechanisms can be useful for practitioner to assess the pile performance due to twin tunnelling.  相似文献   
35.
Summary. In the planning and procurement phases of tunnelling projects, numerous decisions have to be made regarding tender price and budget. Many case studies have shown that, in practice, the predicted costs and time schedules are often exceeded. This paper describes a study of the various risk factors in machine tunnelling and their differing impacts on cost and time. It has been concluded from the study that it is important to make a clear distinction between normal cost and time, and the undesirable events that cause exceptional cost and time. Existing decision-aid estimation models consider variation of the risk factors, but do not consider normal cost or time separately from undesirable events. Usually, estimations of project cost and time are made in a deterministic manner, but this does not allow one to consider uncertainty in cost and time variables. However, if the variables are treated probabilistically, the total cost of tunnelling can be expressed as a distribution curve, and a decision can be made on the tunnelling method by comparing the respective cost and time distributions. Based on such decisions, the budget and tender price can be determined separately, both by the client and contractor respectively. To meet the demands placed on decision-making for tender and procurement for currently favoured construction-contracting methods, a new model for estimating tender price and budget has been developed, and is described in this paper. This estimating technique has been applied to a case study of the Grauholz Tunnel. The predictions obtained from the estimation model are shown to be realistic, as the total construction cost and time obtained from the model correspond fairly well to the actual construction cost and time. The separate estimation of normal cost and time and exceptional cost and time contribute to the clarity of the results. The use of the proposed model also shows that the tunnelling method most suitable for the actual geological and hydrogeological conditions can be selected by this method.  相似文献   
36.
Analysis of shield tunnel   总被引:1,自引:0,他引:1  
This paper proposes a two‐dimensional finite element model for the analysis of shield tunnels by taking into account the construction process which is divided into four stages. The soil is assumed to behave as an elasto‐plastic medium whereas the shield is simulated by beam–joint discontinuous model in which curved beam elements and joint elements are used to model the segments and joints, respectively. As grout is usually injected to fill the gap between the lining and the soil, the property parameters of the grout are chosen in such a way that they can reflect the state of the grout at each stage. Furthermore, the contact condition between the soil and lining will change with the construction stage, and therefore, different stress‐releasing coefficients are used to account for the changes. To assess the accuracy that can be attained by the method in solving practical problems, the shield tunnelling in the No. 7 Subway Line Project in Osaka, Japan, is used as a case history for our study. The numerical results are compared with those measured in the field. The results presented in the paper show that the proposed numerical procedure can be used to effectively estimate the deformation, stresses and moments experienced by the surrounding soils and the concrete lining segments. The analysis and method presented in this paper can be considered to be useful for other subway construction projects involving shield tunnelling in soft soils. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
37.
Parasnis has observed in a presidential address that geophysics is not a Popperian science in a major way. That is, hypotheses are not consciously put forth in a falsifiable format and much of the effort goes in seeking supporting evidence for favoured hypotheses. Parker evolved a parameter extremization strategy, initially to tackle the problem of non-uniqueness in geophysical inference. Later he based a hypothesis testing proposal on it, which is refreshingly Popperian. It has not been adopted widely, partly because it requires global extrema, and not local and this has been regarded as a problem with no solution. Attention is drawn towards tunnelling algorithm, which solves the problem of global optimization successfully, makes Parker’s Popperian proposal practical and extends the range of Popperian geophysics.  相似文献   
38.
Summary Quick, simple, reliable, and inexpensive measurements of overbreak and underbreak are needed for proper evaluation of tunnelling by the drill and blast method. Problems causing rock damage can be identified and remedied while the work is still in progress. The measurements are also useful in identifying causes of overbreak and overbreak, and in helping to settle contractual disputes relating to payment for replacement concrete and secondary blasting of tights (zones of underbreak). A newly developed method to measure underbreak and overbreak is presented here. The light sectioning method (LSM) uses a radial sheet of light to define the tunnel profile. An image of the final tunnel profile is acquired and digitized, using digital image analysis. This profile is superimposed over the design profile, and from this zones of overbreak and underbreak are identified, quantified, and presented graphically.  相似文献   
39.
简述了我国隧道及地下工程的发展,介绍了当前隧道及地下工程的施工方法、辅助工法,并提出了施工中应注意的有关重要问题。  相似文献   
40.
Complementary Entropy and Wavelet Analysis of Drilling-Ability Data   总被引:1,自引:0,他引:1  
The paper combines wavelet and entropy analysis of nonstationary drilling-ability data in order to obtain optimum information on the mechanical behavior of different geological formations. Both methods are multiscale in nature, and while entropy analysis provides information on stationary subdomains, wavelet analysis identifies dominant scales or range of scales at which the entropy analysis is most useful. The combination of the techniques yields relatively simple results that can aid the drilling process by providing information on delays to be expected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号