首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   636篇
  免费   89篇
  国内免费   64篇
测绘学   2篇
大气科学   36篇
地球物理   197篇
地质学   96篇
海洋学   54篇
天文学   356篇
综合类   28篇
自然地理   20篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   11篇
  2020年   10篇
  2019年   13篇
  2018年   8篇
  2017年   8篇
  2016年   6篇
  2015年   6篇
  2014年   23篇
  2013年   23篇
  2012年   27篇
  2011年   15篇
  2010年   18篇
  2009年   60篇
  2008年   40篇
  2007年   60篇
  2006年   50篇
  2005年   39篇
  2004年   50篇
  2003年   55篇
  2002年   30篇
  2001年   30篇
  2000年   33篇
  1999年   33篇
  1998年   44篇
  1997年   12篇
  1996年   10篇
  1995年   19篇
  1994年   11篇
  1993年   8篇
  1992年   9篇
  1991年   5篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1984年   1篇
排序方式: 共有789条查询结果,搜索用时 546 毫秒
661.
GRB 990123 was a long, complex gamma-ray burst accompanied by an extremely bright optical flash. We find different constraints on the bulk Lorentz of this burst to be consistent with the speculation that the optical light is emission from the reverse shock component of the external shock. Motivated by this currently favoured idea, we compute the prompt reverse shock emission to be expected for bursts in which multiwavelength observations allow the physical parameters to be constrained. We find that for reasonable assumptions about the velocity of source expansion, a strong optical flash  mV≈9  was expected from the reverse shocks, which were usually found to be mildly relativistic. The best observational prospects for detecting these prompt flashes are highlighted, along with the possible reasons for the absence of optical prompt detections in ongoing observations.  相似文献   
662.
Optical and radio afterglows arising from shocks by relativistic conical ejecta running into pre-burst massive stellar winds are revisited. Under the homogeneous thin-shell approximation and a realistic treatment for the lateral expansion of jets, our results show that a notable break exists in the optical light curve in most cases we calculated in which the physical parameters are varied within reasonable ranges. For a relatively tenuous wind which cannot decelerate the relativistic jet to cause a light curve break within days, the wind termination shock due to the ram pressure of the surrounding medium occurs at a small radius, namely, a few times 1017 cm. In such a structured wind environment, the jet will pass through the wind within several hours and run into the outer uniform dense medium. The resulting optical light curve flattens with a shallower drop after the jet encounters the uniform medium, and then declines deeply, triggered by runaway lateral expansion.  相似文献   
663.
664.
We present the results of modelling of the H2 emission from molecular outflow sources, induced by shock waves propagating in the gas. We emphasize the importance of proper allowance for departures from equilibrium owing to the finite flow velocity of the hot, compressed gas, with special reference to the excitation, dissociation and reformation of H2. The salient features of our computer code are described. The code is applied to interpreting the spectra of the outflow sources Cepheus A West and HH43. Particular attention is paid to determining the cooling times in shocks whose speeds are sufficient for collisional dissociation of H2 to take place; the possible observational consequences of the subsequent reformation of H2 are also examined. Because molecular outflow sources are intrinsically young objects, J-type shocks may be present in conjunction with magnetic precursors, which have a C-type structure. We note that very different physical and dynamical conditions are implied by models of C- and J-type shocks which may appear to fit the same H2 excitation diagram.  相似文献   
665.
666.
We study the stability properties of strong hydrodynamic shocks and their associated radiative cooling layers. We explore a range of conditions which covers both molecular and atomic gas impacting against a rigid wall. Through a linear analysis employing a cooling function of the form  Λ∝ρβ T α  and a specific heat ratio of γ, we determine the overstability regime in the parameter space consisting of  α, β  and γ. In general, if α is sufficiently low, the fundamental mode leads to long-wavelength growing oscillations. For the fundamental mode, we find that values of γ corresponding to molecular hydrodynamics lead to a significantly restricted instability range for α in comparison with the shocks in a monatomic medium. The conditions for the growth of higher-order modes, however, are relatively unchanged. This predicts that certain molecular shocks are prone to displaying signatures of small-scale rapid variability. Dissociative shocks, however, can be subject to a large-scale overstability if subsequent molecule formation in the cooling layer abruptly increases the cooling rate. In contrast to the dynamical rippling overstability, the cooling overstability is suppressed for a sufficiently low specific heat ratio.  相似文献   
667.
We investigate numerically the contribution to the cosmic gamma-ray background from cosmic-ray ions and electrons accelerated at intergalactic shocks associated with cosmological structure formation. We show that the kinetic energy of accretion flows in the low-redshift intergalactic medium is thermalized primarily through moderately strong shocks, which allow for an efficient conversion of shock ram pressure into cosmic-ray pressure. Cosmic rays accelerated at these shocks produce a diffuse gamma-ray flux which is dominated by inverse Compton emission from electrons scattering off cosmic microwave background photons. Decay of neutral π mesons generated in p–p inelastic collisions of the ionic cosmic-ray component with the thermal gas contribute about 30 per cent of the computed emission. Based on experimental upper limits on the photon flux above 100 MeV from nearby clusters we constrain the efficiency of conversion of shock ram pressure into relativistic CR electrons to  ≲1 per cent  . Thus, we find that cosmic rays of cosmological origin can generate an overall significant fraction of order 20 per cent and no more than 30 per cent of the measured gamma-ray background.  相似文献   
668.
669.
The effect of curvature on detonation speed and structure for detonation waves in C–O is investigated. Weakly curved detonation fronts have a sonic point inside the reaction zone. In such waves the detonation speed depends on the detailed internal structure and not on simple jump conditions. Hence, in order to obtain the correct propagation speed and products of burning, the reaction length-scales must be resolved in any numerical simulation involving curved detonations in C–O. For each value of the initial density there is a corresponding extinction curvature above which quasi-steady detonations cannot propagate. For densities less than 2×107 g cm−3, where the self-sustaining planar waves are Chapman–Jouguet, and for realistic values of the curvature, the sonic point moves from the end of silicon burning to the end of oxygen burning. Hence the effective detonation length, i.e. the length-scale of the burning between the shock and the sonic point which can affect the front, is several orders of magnitudes less than the planar waves predict. However, silicon burning, which occurs downstream of the sonic point, is increased in length by a few orders of magnitude owing to lower detonation speeds and temperatures. Therefore more intermediate-mass elements will be produced by incomplete burning if curvature is taken into account. Recent advances in detonation theory and modelling are also discussed in the context of Type Ia supernovae.  相似文献   
670.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号