首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3050篇
  免费   737篇
  国内免费   951篇
测绘学   81篇
大气科学   1452篇
地球物理   744篇
地质学   1497篇
海洋学   553篇
天文学   24篇
综合类   170篇
自然地理   217篇
  2024年   19篇
  2023年   28篇
  2022年   95篇
  2021年   105篇
  2020年   113篇
  2019年   161篇
  2018年   106篇
  2017年   116篇
  2016年   106篇
  2015年   142篇
  2014年   196篇
  2013年   173篇
  2012年   169篇
  2011年   187篇
  2010年   160篇
  2009年   235篇
  2008年   235篇
  2007年   295篇
  2006年   221篇
  2005年   233篇
  2004年   186篇
  2003年   160篇
  2002年   171篇
  2001年   126篇
  2000年   123篇
  1999年   122篇
  1998年   131篇
  1997年   107篇
  1996年   100篇
  1995年   65篇
  1994年   72篇
  1993年   50篇
  1992年   55篇
  1991年   58篇
  1990年   30篇
  1989年   19篇
  1988年   31篇
  1987年   10篇
  1986年   5篇
  1985年   6篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   3篇
  1971年   1篇
排序方式: 共有4738条查询结果,搜索用时 92 毫秒
101.
地球脉动——表现、级别及与古地磁的联系   总被引:1,自引:1,他引:1  
地球脉动的概念是指地球在其历史中曾发生膨胀和收缩的周期性变化。其根据是构造变动、岩浆活动、地磁极倒转以及海平面升降等方面,在地球的膨胀和收缩期,均有各种表现。构造 海平面升降在地球收缩期形成海退,在膨胀期形成海侵。在一个地球脉动旋回的不同时期,地表、海平面和洋底之间的相互关系均有变化,因而形成“层序”的沉积记录。地磁场的强度和地磁极倒转频率在显生宙有明显变化,有高峰期和平静期。这种频率变化与构造变动和岩浆活动都有对应关系,特别是4Ma为准周期的地磁极倒转频率与海底扩张、洋壳形成速率之间具有良好的对应关系。地球脉动旋回可以分为不同的级次,构成级别体系:超级旋回约1Ga,巨旋回250~300Ma,一级旋回50~150Ma,二级旋回5~50Ma,三级旋回1~5Ma,均可与构造旋回相对应,更高的级次对构造不形成影响。三级及更长的脉动旋回可能受深部过程的控制。中、新生代以来,地球脉动是在地球适度膨胀的背景下进行的。  相似文献   
102.
液化土层对地表加速度反应谱的影响   总被引:4,自引:0,他引:4  
采用一种改进的有效应力方法研究土层液化对地表加速度反应谱的影响,分析中考虑了砂层的厚度、埋深和输入地震波的幅值和波型等因素。分析结果表明,土层液化使地表加速度反应谱的特征周期至少延长0.1秒以上,使原Ⅱ类场地变为Ⅲ类场地,高烈度时易变成Ⅳ类场地,反应谱中周期0.8秒-1.0秒是液化砂层加震或减震的一个分界点,液化对反应谱短周期分量具有一定的减震作用,而对长周期分量有非常显著的放大作用。  相似文献   
103.
Large-eddy simulations (LES) of the continuously turbulent quasi-equilibrium stable boundary layer (SBL) are conducted with grid lengths in the range of 12.5 m to 2 m, in order to explore resolution sensitivity, and determine at what point grid convergence occurs. The structure of the mean potential temperature, winds, and turbulent fluxes varies significantly over this resolution range. The highest resolution simulations show a significant degree of convergence. The dimensionless momentum diffusivity asymptotes to a value of 0.06, corresponding to a limiting flux Richardson number of 0.15.Using the converged simulations, some scaling hypotheses underpinning first-order and second-order closure models are revisited. The effective Richardson number stability functions of the LES are compared with the forms often used in numerical weather prediction (NWP). The mixing implied by the LES is less than that used in NWP. The commonly used similarity profiles for heat and momentum fluxes, and the scalings for dissipation and pressure covariances are compared with the LES. This information could provide guidance for the next generation of SBL parametrization schemes.  相似文献   
104.
The convective boundary layer (CBL) with a wide range of stability is simulated experimentally using a thermally stratified wind tunnel, and numerically by direct numerical simulation (DNS). The turbulence structures and flow characteristics of various CBL flows, capped by a strong temperature inversion and affected by surface shear, are investigated. The various vertical profiles of turbulence statistics similar to those from the observed CBL in the field are successfully simulated in both the wind-tunnel experiment and in DNS. The comparison of the wind-tunnel data and DNS results with those of atmospheric observations and water-tank studies shows the crucial dependence of the turbulence statistics in the upper part of the layer on the strength of the inversion layer, as well as the modification of the CBL turbulence regime by the surface shear.  相似文献   
105.
The effects of baroclinicity, imposed on the dry mixed layer by the presenceof large-scale, horizontal temperature gradients, have been investigated basedon a large-eddy simulation model. The purpose of this investigation is to examinesimultaneous impacts of thermal stratification and shear in the atmospheric boundarylayer. For this purpose, five cases are considered – one barotropic, and four baroclinic.Based on the performed simulations, a new parametrization of the interfacial layer isproposed. The parameterization employs new interfacial scaling, which is valid at thetop of the mixed layer. In terms of new scales, dimensionless moments characterizingturbulence at the top of the shearless mixed layer are universal constants. In the shearedcase, dimensionless statistics of turbulence are shown to be functions of the interfacialRichardson number.  相似文献   
106.
山地煤矿采区地形条件复杂,正确进行大时差静校正是处理好二维地震勘探资料的重要一环。大时差静校正会改变煤层反射波时间(t0)及双曲线特征,为减小校正误差,需设立一个CMP面,将校正量分为高频分量和CMP校正量。在地形高差变化剧烈的山地,不能用高于地表面的统一基准面为零线进行时深转换,须进行充填层时差(△t)校正,将统一基准面校正到地表面,再以地表面为零线进行时深转换成图。以便准确无误的展示煤层赋存形态,提高构造图精度。  相似文献   
107.
In this paper, the process of oasis-desert circulation (ODC) is simulated by MM5V3.5 model through designing an ideal oasis-desert scheme and assuming that initial atmosphere is at rest (V = 0). The findings showed that the key of forming special oasis boundary structure is the difference of energy and water between oasis and desert. The evaporation of oasis surface consumes heat energy, and the low temperature of oasis causes an oasis breeze circulation (OBC), which drives an ODC with a downdraft over the oasis and an updraft over the desert. Later, the cold, dry and stable boundary over oasis is gradually formed, on the contrary,the atmospheric boundary over desert on the edge of oasis is hot, humid and unstable and its height is about 600 hPa. The updraft over the desert forms a wet ring that acts as a vertical wall weakening the low-level moisture exchange between the oasis and desert. The downdraft of OBC increases the atmospheric stability that reduces the oasis evaporation. The low-level outflow from the oasis (into the desert) prevents the dry, hot air flowing from the desert into the oasis.Thus an oasis self-preservation mechanism may be formed due to OBC. The horizontal area influenced by oasis is twice as oasis area and the vertical range is four times as oasis. The ODC is strong in the daytime and reaches the strongest at 17:00, and the influenced area is the largest at 20:00.  相似文献   
108.
The Cretaceous system of the Kuqa depression is a regional scale (second order) depositional sequence defined by parallel unconformities or minor angular unconformities. It can be divided into four third-order sequence sets, eleven third-order sequences and tens of fourth- and fifth-order sequences. It consists generally of a regional depositional cycle from transgression to regression and is composed of three sets of facies associations: alluvial-fluvial, braided river-deltaic and lacustrine-deltaic facies associations. They represent the lowstand, transgressive and highstand facies tracts within the second-order sequence. The tectonic subsidence curve reconstructed by backstripping technique revealed that the Cretaceous Kuqa depression underwent a subsidence history from early accelerated subsidence, middle rapid subsidence and final slower subsidence phases during the Cretaceous time, with the correspondent tectonic subsidence rates being 30-35 m/Ma, 40-45 m/Ma and 5-10 m/Ma obtained from northern foredeep. This is likely attributed to the foreland dynamic process from early thrust flexural subsidence to late stress relaxation and erosion rebound uplift. The entire sedimentary history and the development of the three facies tracts are a response to the basin subsidence process. The slower subsidence foreland gentle slope was a favorable setting for the formation of braided fluvial deltaic systems during the late period of the Cretaceous, which comprise the important sandstone reservoirs in the depression. Sediment records of impermanent marine transgression were discovered in the Cretaceous and the major marine horizons are correctable to the highstands of the global sea level during the period.  相似文献   
109.
A multi‐proxy approach was used to examine the geomorphic dynamics and environmental history of an upper deltaic ?oodplain tract in the Sacramento–San Joaquin Delta, California. Three long cores were collected from the McCormack–Williamson Tract (MWT) and these cores were analyzed for bulk density, loss‐on‐ignition, ?ne (clay and silt) content, Al concentration, magnetic susceptibility, pollen, and charcoal. Radiocarbon dates obtained for the cores were converted into calendar years and an age–depth model was constructed. Long‐term vertical accretion and sedimentation rates were estimated from the age–depth model. Cross‐core relations show that coarse sediment generally accumulates more rapidly and has greater magnetic susceptibility compared to ?ne sediment. Percentage ?ne and LOI data show a strong linear relationship that indicates ?ooding is the primary mechanism for the deposition of particular organic matter on the ?oodplain and that landscape wash load has contributed a highly consistent fraction of persistent organic matter averaging 5·5 per cent to the site. Down‐core grain size pro?les show two hydrological domains in the cores, namely millennial ?ne–coarse ?uctuations superimposed on general up‐core ?ning. Coarse sediment is viewed as channel or near‐channel overbank deposits, whereas ?ne deposits are considered to be distal overbank ?ood deposits. The coarse–?ne ?uctuations are indicative of changing depositional settings as channels migrated laterally across MWT, whereas the upward ?ning trend re?ects a combination of self‐limiting overbank deposition as ?oodplain elevation increased and decreasing competence as sea‐level rise reduced ?ood‐pulse energy slopes. MWT has been cross‐cut and incised numerous times in the past, only to have the channels abandoned and subsequently ?lled by ?ne sediment. The channels around MWT attained their modern con?guration about 4000 years ago. MWT likely came under tidal in?uence at about 2500 cal BP. Wetlands have recently developed on MWT, but they are inorganic sediment dominated. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
110.
This paper presents a model for the analysis of the diffraction of plane waves at a cavity in an infinite homogeneous linear elastic medium supported by a segmented lining. An elastic boundary layer is introduced between the cavity lining and the infinite medium. The boundary layer is simulated by ‘elastic boundary conditions’ in which the stress is proportional to the relative displacement of the lining and of the surrounding medium boundary. A closed‐form analytical solution of the problem was obtained using the Fourier–Bessel series, the convergence of which was proven. It was shown that the number of series terms required to obtain a desired level of accuracy can be determined in advance. Using amplitude–frequency response analysis it was shown that the boundary layer produces additional ‘pseudo‐resonance’ frequencies that depend on the layer properties. These frequencies are almost identical to the eigenvalues obtained from the simple analysis of a segmented elastically supported lining. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号