首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   4篇
  国内免费   4篇
大气科学   13篇
地球物理   11篇
地质学   6篇
综合类   4篇
自然地理   17篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2017年   6篇
  2013年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   3篇
  2006年   7篇
  2005年   3篇
  2004年   4篇
  2002年   6篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1995年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
31.
为有针对性地做好山区山洪灾害防御,基于近25年加密区域站和国家站气象资料与310个山洪灾情资料,研究精细到乡镇的承德市山洪灾害1小时雨量阈值与3小时雨量阈值;从致灾因子危险性、孕灾环境敏感性和承灾体脆弱性3个方面,应用层次分析法和专家打分法,建立承德市山洪灾害风险评估模型,基于GIS制作承德市精细化山洪灾害风险区划。结果表明: 承德市山洪灾害较高风险等级以上面积为14318.99km2,占承德总面积的36.2%,中风险等级面积约为11719.38km2,占承德总面积的30%,其余均为中风险等级以下。承德市山洪灾害高风险区主要位于丰宁、隆化大部分地区和市区部分区域以及宽城东南部。  相似文献   
32.
“99”新疆特大混合型洪水的气象成因分析   总被引:4,自引:3,他引:1  
分析了 1999年夏季处在干旱半干旱地区的新疆发生的特大混合型洪水的气象成因 ,指出由于高空迅速持续升温引起高山积雪大面积融化加上山区局地暴雨 ,二者共同作用是造成 1999年新疆夏季特大混合型洪水的主要原因。冰雪融化成分显著 ,是 1999年夏季洪水的重要特征 ,文中分析了其可预报性 ,强调了对夏季高山积雪监测的重要性。  相似文献   
33.
This paper focuses on a topographic methodology to characterize the amount of sediment stored in channels and the use of historical photographs for aerial survey by stereophotogrammetry, as part of wider research on debris‐flow magnitude prediction. The topographic methodology uses equidistant four‐point cross‐sections along the long profile of the channel. Each cross‐section is representative of a 50‐m reach of the channel. To calculate the volume of each reach, the difference is calculated between a reference level and the topographic surface. The reference level is the lowest level where the debris flow can erode, and in the current method this level is estimated from fixed points along the long profile of the channel. The accuracy of the method has been estimated by comparing results of a detailed topographic survey, with a standard deviation corresponding to about 6 per cent of the total calculated sediment volume. This topographic methodology has been used on aerial photographs by photogrammetry. This tool was applied to photographs taken on 12 past dates. The scales of the archive photographs used range from 1:3000 to 1:30 000, but results are consistent and permit us to calculate sediment states of the channel for different past dates with an uncertainty of about 6 per cent of the total volume. The application of the technique to the Manival debris‐flow torrent has permitted us to propose some partial sediment budgets and erosion‐rate estimates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
34.
对湖北省200次山洪灾害个例逐时雨量及15次逐时水位、流量分析表明:山洪灾害雨量分布可归纳为单峰、双峰、多峰3种类型,其中单峰型所占比例较大;天气系统特征均表现有中尺度系统活动,单峰型主要以局地性降雨过程为主,强降雨历时短,双峰型主要以系统性降水过程为主,强降雨历时较长,多峰型主要以持续性降雨过程为主,强降雨历时长;激发山洪灾害的关键因素主要是6 h以内的雨强。  相似文献   
35.
Raise Beck is a mountain torrent located in the central Lake District fells, northern England (drainage area of 1·27 km2). The torrent shows evidence of several major flood events, the most recent of which was in January 1995. This event caused a major channel avulsion at the fan apex diverting the main flood flow to the south, blocking the A591 trunk road and causing local flooding. The meteorological conditions associated with this event are described using local rainfall records and climatic data. Records show 164 mm of rainfall in the 24 hours preceding the flood. The peak flood discharge is reconstructed using palaeohydrological and rainfall–runoff methods, which provide discharge values of 27–74 m3 s?1, and 4–6 m3 s?1, respectively. The flood transported boulders with b‐axes up to 1400 mm. These results raise some important general questions about flood estimation in steep mountain catchments. The geomorphological impact of the event is evaluated by comparing aerial photographs from before and after the flood, along with direct field observations. Over the historical timescale the impact and occurrence of flooding is investigated using lichenometry, long‐term rainfall data, and documentary records. Two major historical floods events are identified in the middle of the nineteenth century. The deposits of the recent and historical flood events dominate the sedimentological evidence of flooding at Raise Beck, therefore the catchment is sensitive to high magnitude, low frequency events. Following the 1995 flood much of the lower catchment was channelized using rip‐rap bank protection, re‐establishing flow north towards Thirlmere. The likely success of this management strategy in containing future floods is considered, based on an analysis of channel capacities. It is concluded that the channelization scheme is only a short‐term solution, which would fail to contain the discharge of an event equivalent to the January 1995 flood. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
36.
本文在微扰理论的基础上导出了高斯光束抖动归一化频谱的普遍表达式和准直光束、球面波光束在均匀光路条件下的分析表达式。计算表明这些频谱中存在一个与湍流外尺度、横截风速有确定关系的峰值频率。我们根据这个特征利用大气相干长度测量仪进行了湍流外尺度的遥感实验,与此同时用五台三杯风速计测量了光路中的平均风速。实验结果指出,离地面8m高度上的湍流外尺度在2.6-7.0m之间变化,平均值为4.9m  相似文献   
37.
According to the principle of the eruption of debris flows, the new torrent classification techniques are brought forward. The torrent there can be divided into 4 types such as the debris flow torrent with high destructive strength, the debris flow torrent, high sand-carrying capacity flush flood torrent and common flush flood by the techniques. In this paper, the classification indices system and the quantitative rating methods are presented. Based on torrent classification, debris flow torrent hazard zone mapping techniques by which the debris flow disaster early-warning object can be ascertained accurately are identified. The key techniques of building the debris flow disaster neural network (NN) real time forecasting model are given detailed explanations in this paper, including the determination of neural node at the input layer, the output layer and the implicit layer, the construction of knowledge source and the initial weight value and so on. With this technique, the debris flow disaster real-time forecasting neural network model is built according to the rainfall features of the historical debris flow disasters, which includes multiple rain factors such as rainfall of the disaster day, the rainfall of 15 days before the disaster day, the maximal rate of rainfall in one hour and ten minutes. It can forecast the probability, critical rainfall of eruption of the debris flows, through the real-time rainfall monitoring or weather forecasting. Based on the torrent classification and hazard zone mapping, combined with rainfall monitoring in the rainy season and real-time forecasting models, the debris flow disaster early-warning system is built. In this system, the GIS technique, the advanced international software and hardware are applied, which makes the system's performance steady with good expansibility. The system is a visual information system that serves management and decision-making, which can facilitate timely inspect of the variation of the torrent type and hazardous zone, the torrent management, the early-warning of disasters and the disaster reduction and prevention.  相似文献   
38.
TANG Chuan  ZHU Jing 《地理学报》2006,16(4):479-486
This paper explores the methodology for compiling the torrent hazard and risk zonation map by means of GIS technique for the Red River Basin in Yunnan province of China, where is prone to torrent. Based on a 1:250,000 scale digital map, six factors including slope angle, rainstorm days, buffer of river channels, maximum runoff discharge of standard area, debris flow distribution density and flood disaster history were analyzed and superimposed to create the torrent risk evaluation map. Population density, farmland percentage, house property, and GDP as indexes accounting for torrent hazards were analyzed in terms of vulnerability mapping. Torrent risk zonation by means of GIS was overlaid on the two data layers of hazard and vulnerability. Then each grid unit with a resolution of 500 m × 500 m was divided into four categories of the risk: extremely high, high, moderate and low. Finally the same level risk was combined into a confirmed zone, which represents torrent risk of the study area. The risk evaluation result in the upper Red River Basin shows that the extremely high risk area of 13,150 km2 takes up 17.9% of the total inundated area, the high risk area of 33,783 km2 is 45.9%, the moderate risk area of 18,563 km2 is 25.2% and the low risk area of 8115 km2 is 11.0%.  相似文献   
39.
湖南省山洪灾害及防治对策   总被引:2,自引:0,他引:2  
曾扬  肖坤桃  陈文平 《山地学报》2004,22(3):337-339
根据湖南省山洪灾害的实际情况,对灾害的特点、成灾原因、已经采取的防治措施等进行了分析,指出了现有防治工作中存在的问题,对今后山洪灾害的防治提出了相应的建议。  相似文献   
40.
中国山洪灾害造成的经济损失在各类灾害损失中所占比重日趋增大,其中房屋损毁是造成经济损失和人员伤亡的重要因素。本文以房屋为研究对象,基于全国山洪灾害调查评价提供的数据,分析房屋暴露量的时空分布特征,构建山洪灾害房屋损毁风险评估模型,对房屋损毁风险进行分析及原因探究。结果表明:① 中国山洪灾害防治县以一层住宅为主,占比达50%以上的防治县分布范围大致与中国第二、三阶梯分界线一致;砖混结构仍为迄今为止中国山区农村运用最为广泛的房屋结构类型,其次为砖木结构,再次为钢混结构和其它结构;② 中国山洪灾害防治县房屋脆弱性呈现西北高、东南低的整体空间格局;房屋损毁风险呈现东部高、西部低的空间分布特征,且损毁风险较高的地区呈带状或集聚状态分布。损毁风险很高的地区集中于辽东半岛、山东半岛、海南岛及东南沿海地带,且在燕山-太行山区呈现沿东北-西南方向的条带状分布,损毁风险较高的地区主要分布于太行山区及长江中下游地区;③ 房屋类型对山洪灾害房屋损毁风险贡献度较高的地区主要为山东省、山西省及河北省;山洪强度对房屋损毁风险贡献率较高的地区主要呈3条条带状分布:燕山-太行山分布带、浙闽滨海丘陵分布带、两广滨海分布带。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号