首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1722篇
  免费   31篇
  国内免费   132篇
测绘学   62篇
大气科学   100篇
地球物理   424篇
地质学   981篇
海洋学   141篇
天文学   48篇
综合类   1篇
自然地理   128篇
  2024年   15篇
  2023年   38篇
  2022年   47篇
  2021年   67篇
  2020年   168篇
  2019年   89篇
  2018年   122篇
  2017年   179篇
  2016年   118篇
  2015年   136篇
  2014年   232篇
  2013年   358篇
  2012年   215篇
  2011年   1篇
  2010年   8篇
  2008年   3篇
  2007年   8篇
  2006年   11篇
  2005年   14篇
  2004年   13篇
  2003年   10篇
  2002年   18篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
排序方式: 共有1885条查询结果,搜索用时 162 毫秒
961.
The dynamic analysis of a surface rigid foundation in smooth contact with a transversely isotropic half-space under a buried inclined time-harmonic load is addressed. By virtue of the superposition technique, appropriate Green׳s functions, and employing further mathematical techniques, solution of the mixed-boundary-value problem is expressed in terms of two well-known Fredholm integral equations. Two limiting cases of the problem corresponding to the static loading and isotropic medium are considered and the available results in the literature are fully recovered. For the static case, the results pertinent to both frictionless and bonded contacts are obtained and compared. With the aid of the residue theorem and asymptotic decomposition method, an effective and robust approach is proposed for the numerical evaluation of the obtained semi-infinite integrals. For a wide range of the excitation frequency, both normal and rotational compliances are depicted in dimensionless plots for different transversely isotropic materials. Based on the obtained results, the effects of anisotropy are highlighted and discussed.  相似文献   
962.
Dynamic response of a flexible cantilever wall retaining elastic soil to harmonic transverse seismic excitations is determined with the aid of a modified Vlasov–Leontiev foundation model and on the assumption of vanishing vertical displacement of the soil medium. The soil–wall interaction is taken into consideration in the presented model. The governing equations and boundary conditions of the two unknown coupled functions in the model are derived in terms of Hamilton׳s principle. Solutions of the two unknown functions are obtained on the basis of an iterative algorithm. The present method is verified by comparing its results with those of the existing analytical solution. Moreover, a mechanical model is proposed to evaluate the presented method physically. A parametric study is performed to investigate the effects of the soil–wall system properties and the excitations on the dynamic response of the wall.  相似文献   
963.
In this paper the effects of deep excavation on seismic vulnerability of existing buildings are investigated. It is well known that deep excavations induce significant changes both in stress and strain fields of the soil around them, causing a displacement field which can modify both the static and dynamic responses of existing buildings. A FEM model of a real case study, which takes into account geometry, non-linear soil behavior, live and dead loads, boundary conditions and soil–structure interaction, has been developed in order to estimate the soil displacements and their effects on seismic behavior of a reinforced concrete framed system close to deep excavation. Considering a significant accelerometric seismic input, the non-linear dynamic responses of the reinforced concrete framed structure, both in the pre and post-excavation configurations, have been evaluated and, then, compared to estimate the modification in seismic vulnerability, by means of different seismic damage indices and inter-story drifts.  相似文献   
964.
965.
In porous media, the dynamics of the invading front between two immiscible fluids is often characterized by abrupt reconfigurations caused by local instabilities of the interface. As a prototype of these phenomena we consider the dynamics of a meniscus in a corner as it can be encountered in angular pores. We investigate this process in detail by means of direct numerical simulations that solve the Navier–Stokes equations in the pore space and employ the Volume of Fluid method (VOF) to track the evolution of the interface. We show that for a quasi-static displacement, the numerically calculated surface energy agrees well with the analytical solutions that we have derived for pores with circular and square cross sections. However, the spontaneous reconfigurations are irreversible and cannot be controlled by the injection rate: they are characterized by the amount of surface energy that is spontaneously released and transformed into kinetic energy. The resulting local velocities can be orders of magnitude larger than the injection velocity and they induce damped oscillations of the interface that possess their own time scales and depend only on fluid properties and pore geometry. In complex media (we consider a network of cubic pores) reconfigurations are so frequent and oscillations last long enough that increasing inertial effects leads to a different fluid distribution by influencing the selection of the next pore to be invaded. This calls into question simple pore-filling rules based only on capillary forces. Also, we demonstrate that inertial effects during irreversible reconfigurations can influence the work done by the external forces that is related to the pressure drop in Darcy’s law. This suggests that these phenomena have to be considered when upscaling multiphase flow because local oscillations of the menisci affect macroscopic quantities and modify the constitutive relationships to be used in macro-scale models. These results can be extrapolated to other interface instabilities that are at the origin of fast pore-scale events, such as Haines jumps, snap-off and coalescence.  相似文献   
966.
To improve our understanding of the impacts of feedback between the atmosphere and the terrestrial water cycle including groundwater and to improve the integration of water resource management modelling for climate adaption we have developed a dynamically coupled climate–hydrological modelling system. The OpenMI modelling interface is used to couple a comprehensive hydrological modelling system, MIKE SHE running on personal computers, and a regional climate modelling system, HIRHAM running on a high performance computing platform. The coupled model enables two-way interaction between the atmosphere and the groundwater via the land surface and can represent the lateral movement of water in both the surface and subsurface and their interactions, not normally accounted for in climate models. Meso-scale processes are important for climate in general and rainfall in particular. Hydrological impacts are assessed at the catchment scale, the most important scale for water management. Feedback between groundwater, the land surface and the atmosphere occurs across a range of scales. Recognising this, the coupling was developed to allow dynamic exchange of water and energy at the catchment scale embedded within a larger meso-scale modelling domain. We present the coupling methodology used and describe the challenges in representing the exchanges between models and across scales. The coupled model is applied to one-way and two-way coupled simulations for a managed groundwater-dominated catchment, the Skjern River, Denmark. These coupled model simulations are evaluated against field observations and then compared with uncoupled climate and hydrological model simulations. Exploratory simulations show significant differences, particularly in the summer for precipitation and evapotranspiration the coupled model including groundwater and the RCM where groundwater is neglected. However, the resulting differences in the net precipitation and the catchment runoff in this groundwater dominated catchment were small. The need for further decadal scale simulations to understand the differences and insensitivity is highlighted.  相似文献   
967.
Due to complex dynamics inherent in the physical models, numerical formulation of subsurface and overland flow coupling can be challenging to solve. ParFlow is a subsurface flow code that utilizes a structured grid discretization in order to benefit from fast and efficient structured solvers. Implicit coupling between subsurface and overland flow modes in ParFlow is obtained by prescribing an overland boundary condition at the top surface of the computational domain. This form of implicit coupling leads to the activation and deactivation of the overland boundary condition during simulations where ponding or drying events occur. This results in a discontinuity in the discrete system that can be challenging to resolve. Furthermore, the coupling relies on unstructured connectivities between the subsurface and surface components of the discrete system, which makes it challenging to use structured solvers to effectively capture the dynamics of the coupled flow. We present a formulation of the discretized algebraic system that enables the use of an analytic form of the Jacobian for the Newton–Krylov solver, while preserving the structured properties of the discretization. An effective multigrid preconditioner is extracted from the analytic Jacobian and used to precondition the Jacobian linear system solver. We compare the performance of the new solver against one that uses a finite difference approximation to the Jacobian within the Newton–Krylov approach, previously used in the literature. Numerical results explores the effectiveness of using the analytic Jacobian for the Newton–Krylov solver, and highlights the performance of the new preconditioner and its cost. The results indicate that the new solver is robust and generally outperforms the solver that is based on the finite difference approximation to the Jacobian, for problems where the overland boundary condition is activated and deactivated during the simulation. A parallel weak scaling study highlights the efficiency of the new solver.  相似文献   
968.
We conducted the ambient noise tomography to image the shallow crustal structure of southern Tibet. The 2D maps of phase velocity anomalies at the periods of 10–16 s show that the low velocities are mainly confined along or near some of the rift zones. While the maps at the periods of 18–25 s show that the coherent patterns that the low velocities expand outside of the rift zones. It means that the low velocities are prevailing in the middle crust of southern Tibet. According to the previous study of surface wave tomography with teleseismic data, we find that the low velocities from the lower crust to the lithospheric mantle are also restricted to the same rift zones. Thus, the integrated knowledge of the distribution of the low velocities in southern Tibet provides some new insight on the formation of the north–south trending rift zones. Compiling the multidiscipline evidences, we conclude that the rifting was an integrated process of the entire lithosphere in the early stage (~26–10 Ma), but mainly occurred within the upper crust due to the weakening a decoupling in the low velocity middle crust in the late stage (later than ~8 Ma).  相似文献   
969.
Lake water level regimes are influenced by climate, hydrology and land use. Intensive land use has led to a decline in lake levels in many regions, with direct impacts on lake hydrology, ecology and ecosystem services. This study examined the role of climate and river flow regime in controlling lake regimes using three different lakes with different hydraulic characteristics (volume-inflow ratio, CIR). The regime changes in the lakes were determined for five different river inflows and five different climate patterns (hot-arid, tropical, moderate, cold-arid, cold-wet), giving 75 different combinations of governing factors in lake hydrology. The input data were scaled to unify them for lake comparisons. By considering the historical lake volume fluctuations, the duration (number of months) of lake volume in different ‘wetness’ regimes from ‘dry’ to ‘wet’ was used to develop a new index for lake regime characterisation, ‘Degree of Lake Wetness’ (DLW). DLW is presented as two indices: DLW1, providing a measure of lake filling percentage based on observed values and lake geometry, and DLW2, providing an index for lake regimes based on historical fluctuation patterns. These indices were used to classify lake types based on their historical time series for variable climate and river inflow. The lake response time to changes in hydrology or climate was evaluated. Both DLW1 and DLW2 were sensitive to climate and hydrological changes. The results showed that lake level in high CIR systems depends on climate, whereas in systems with low CIR it depends more on river regime.  相似文献   
970.
To analyse the existence of interactive competition between phytoplankton and periphyton, we studied their photosynthesis–irradiance (P–E) response during one year in a humic lagoon. Lake production was dominated by phytoplankton, which followed seasonal changes in temperature. Periphyton primary production and algae biomass increased in winter, when phytoplankton biomass and production were lower. In this study we show that even in conditions of phytoplankton dominance, the habitat coupling between phytoplankton and periphyton can still be noticed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号