首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1724篇
  免费   394篇
  国内免费   1181篇
地球物理   115篇
地质学   3052篇
海洋学   14篇
综合类   89篇
自然地理   29篇
  2024年   22篇
  2023年   48篇
  2022年   89篇
  2021年   118篇
  2020年   102篇
  2019年   118篇
  2018年   122篇
  2017年   129篇
  2016年   139篇
  2015年   123篇
  2014年   169篇
  2013年   175篇
  2012年   197篇
  2011年   146篇
  2010年   138篇
  2009年   137篇
  2008年   113篇
  2007年   123篇
  2006年   122篇
  2005年   102篇
  2004年   110篇
  2003年   85篇
  2002年   67篇
  2001年   63篇
  2000年   66篇
  1999年   51篇
  1998年   43篇
  1997年   56篇
  1996年   32篇
  1995年   45篇
  1994年   46篇
  1993年   34篇
  1992年   27篇
  1991年   25篇
  1990年   25篇
  1989年   26篇
  1988年   19篇
  1987年   28篇
  1986年   10篇
  1985年   5篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有3299条查询结果,搜索用时 218 毫秒
981.
周涛发  王彪  范裕  袁峰  张乐骏  钟国雄 《岩石学报》2012,28(10):3087-3098
庐枞中生代火山岩盆地位于长江中下游断陷带内,地处扬子板块的北缘.庐枞盆地内的火山岩和侵入岩分布广泛,包括龙门院、砖桥、双庙和浮山四组火山岩以及34个侵入岩体.最近在庐枞盆地南部正长岩中发现一种新类型铁矿床——马口铁矿床.本次工作通过详细野外地质和室内研究,系统开展了马口铁矿床矿床地质特征、成矿年代学和成矿流体特征研究.马口铁矿床的矿体沿石英正长斑岩体中构造破碎带产出,产状严格受构造破碎带控制,矿床围岩蚀变晕范围较为局限.矿床的成矿作用可分为碱性长石阶段、磁铁矿阶段、石英-硫化物阶段和碳酸盐阶段,其中磁铁矿阶段是主要成矿阶段,形成与宁芜玢岩型铁矿床相类似磁铁矿-磷灰石-阳起石三矿物组合.矿床中与磁铁矿共生的磷灰石流体包裹体均一温度范围为252.2 ~ 322.6℃,反映其成矿温度略低于典型的玢岩铁矿床.通过赋矿岩体锆石LA-ICP-MS U-Pb定年和金云母Ar-Ar方法,确定马口铁矿床的成矿时代为127.3 ±0.8Ma,赋矿岩体的形成时代为129.4±1.4Ma,结合矿床地质特征,可以得出矿区内石英正长斑岩只是提供了赋矿空间,矿床的形成与其无直接成因联系,而可能与黄梅尖A型花岗岩体有关.马口铁矿床是庐枞盆地成矿作用最后阶段的产物,也可能是长江中下游成矿带中最晚一次成矿事件的代表,具有显著的特色.  相似文献   
982.
华南富铀花岗岩和产铀花岗岩特征   总被引:4,自引:0,他引:4  
文章简要叙述了我国南方5省(区)富铀花岗岩和产铀花岗岩概况,详细讨论了产铀花岗岩的主要特征:断裂构造发育,蚀变作用非常强烈,经常有二云母花岗岩出现,中基性和酸性脉岩比较发育。正是这些特征,决定了它们产出铀矿床的能力。  相似文献   
983.
The central, northwestern and western Anatolian magmatic provinces are defined by a large number of late Mesozoic to late Cenozoic collision‐related granitoids. Calc‐alkaline, subalkaline and alkaline intrusive rocks in central Anatolia are mainly metaluminous, shoshonitic, I‐ to A‐types. They cover a petrological range from monzodiorite through quartz monzonite to granite/syenite, and are all enriched in LILE. Their geochemical characteristics are consistent with formation from a subduction‐modified mantle source. Calc‐alkaline plutonic rocks in northwestern Anatolia are mainly metaluminous, medium‐ to high‐K and I‐types. They are monzonite to granite, and all are enriched in LILE and depleted in HFSE, showing features of arc‐related intrusive rocks. Geochemical data reveal that these plutons were derived from partial melting of mafic lower crustal sources. Calc‐alkaline intrusive rocks in western Anatolia are metaluminous, high‐K and I‐types. They have a compositional range from granodiorite to granite, and are enriched in LILE and depleted in HFSE. Geochemical characteristics of these intrusive rocks indicate that they could have originated by the partial melting of mafic lower crustal source rocks.  相似文献   
984.
985.
Palaeozoic rapakivi granites occur in the western segment of the China Central Orogenic System. Exhibiting typical rapakivi texture, these granites contain magmatic microgranular enclaves of intermediate compositions. SHRIMP zircon U–Pb ages for the granites and enclaves are 433 ± 5 Ma and 433 ± 3 Ma, respectively. The rapakivi granites are magnesian to ferroan, calc-alkalic to alkalic, and are characterized by high FeOt/(FeOt + MgO) (0.74–0.91) and Ga/Al ratios, and SiO2, Na2O + K2O and rare earth element (apart from Eu) contents, but low CaO, Ba, and Sr contents. These are typical A-type granite geochemical features. The granites and enclaves exhibit a uniform decrease in TiO2, CaO, Na2O, K2O, FeO, and MgO with increasing SiO2, and both lithologies have similar trace element patterns. Whole-rock ?Nd(t) values vary from??9.2 to??8.7 for the granites and from??9.0 to??8.4 for the enclaves, but zircon ?Hf(t) values vary more widely from??5.8 to??0.2 and??4.6 to +5.1, respectively. Our data suggest that the granites and enclaves have crystallized from different magmas. The granites appear to have been derived from old continental crust, whereas the enclaves required a source having a juvenile component. The spherical shape and undeformed nature of the granites and their geochemical characteristics, coupled with the (ultra)-high pressure metamorphism and evolution of Palaeozoic granitoid magmatism in the North Qaidam orogen, indicate that the rapakivi granites were generated in a post-collisional setting. These rocks are therefore an example of Palaeozoic rapakivi granites emplaced in a post-collisional, extensional orogenic setting.  相似文献   
986.
We conducted geochemical and isotopic studies on the Oligocene–Miocene Niyasar plutonic suite in the central Urumieh–Dokhtar magmatic belt, in order better to understand the magma sources and tectonic implications. The Niyasar plutonic suite comprises early Eocene microdiorite, early Oligocene dioritic sills, and middle Miocene tonalite + quartzdiorite and minor diorite assemblages. All samples show a medium-K calc-alkaline, metaluminous affinity and have similar geochemical features, including strong enrichment of large-ion lithophile elements (LILEs, e.g. Rb, Ba, Sr), enrichment of light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs, e.g. Nb, Ta, Ti, P). The chondrite-normalized rare earth element (REE) patterns of microdiorite and dioritic sills are slightly fractionated [(La/Yb)n = 1.1–4] and display weak Eu anomalies (Eu/Eu* = 0.72–1.1). Isotopic data for these mafic mantle-derived rocks display ISr = 0.70604–0.70813, ?Nd (microdiorite: 50 Ma and dioritic sills: 35 Ma, respectively) = +1.6 and ?0.4, TDM = 1.3 Ga, and lead isotopic ratios are (206Pb/204Pb) = 18.62–18.57, (207Pb/204Pb) = 15.61–15.66, and (208Pb/204Pb) = 38.65–38.69. The middle Miocene granitoids (18 Ma) are also characterized by relatively high REE and minor Eu anomalies (Eu/Eu* = 0.77–0.98) and have uniform initial 87Sr/86Sr (0.7065–0.7082), a range of initial Nd isotopic ratios [?Nd(T)] varying from ?2.3 to ?3.7, and Pb isotopic composition (206Pb/204Pb) = 18.67–18.94, (207Pb/204Pb) = 15.63–15.71, and (208Pb/204Pb) = 38.73–39.01. Geochemical and isotopic evidence for these Eocene–Ologocene mafic rocks suggests that the magmas originated from lithospheric mantle with a large involvement of EMII component during subduction of the Neotethyan ocean slab beneath the Central Iranian plate, and were significantly affected by crustal contamination. Geochemical and isotopic data of the middle Miocene granitoids rule out a purely crustal-derived magma genesis, and suggest a mixed mantle–crustal [MASH (melting, assimilation, storage, and homogenization)] origin in a post-collision extensional setting. Sr–Nd isotope modelling shows that the generation of these magmas involved ~60% to 70% of a lower crustal-derived melt and ~30% to 40% of subcontinental lithospheric mantle. All Niyasar plutons exhibit transitional geochemical features, indicating that involvement of an EMII component in the subcontinental mantle and also continental crust beneath the Urumieh–Dokhtar magmatic belt increased from early Eocene to middle Miocene time.  相似文献   
987.
《International Geology Review》2012,54(16):1975-1991
Late Palaeozoic granites are widely distributed in the southeastern Beishan area, which is located in the central part of the southern Central Asian Orogenic Belt (CAOB). U–Pb zircon dates of five late Palaeozoic granitic plutons from the southeastern Beishan area yield Permian ages: 285 ± 2 Ma (Shuwojing and Western Shuwojing plutons), 269 ± 3 Ma (Jianquanzi and Jiuquandihongshan plutons), and 260 ± 1 Ma (Jiujing pluton). The early Permian Shuwojing pluton, an unfractionated calc-alkaline biotite monzogranite with slightly positive εNd(t) (+0.7 and +0.6) and low initial 87Sr/86Sr (0.70722 and 0.70712), and the early Permian Western Shuwojing pluton, a high-K calc-alkaline biotite granite with slightly negative εNd(t) (?0.2 and ?0.1) and low initial 87Sr/86Sr (0.70390 and 0.70919), are likely derived from a mixture of depleted (juvenile) mantle and upper continental crustal (or sedimentary) material. The mid-Permian Jianquanzi and Jiuquandihongshan monzogranites have highly fractionated potassium-rich calc-alkaline characteristics with negative εNd(t) (?4.3) and very high initial 87Sr/86Sr (0.71949), reflecting a continental crustal component. The compositionally diverse Jiujing pluton and the granodiorite and high-Sr monzogranite phases display adakite-like compositions with relatively low εNd(t) (?0.1 and ?2.2) and high initial 87Sr/86Sr (0.70822 and 0.70913). The Jiujing low-Sr monzogranite has higher initial 87Sr/86Sr (0.73464) and lower εNd(t) (?2.8), indicating a significant continental crustal component in its genesis. This work, combined with the regional geology and previous studies, suggest that the early to middle Permian southern Beishan plutons formed in a post-collisional environment, probably an intracontinental rift environment linked to asthenospheric upwelling in response to the break-off of a subducted slab. In the late Permian, the southern Beishan area was in a compressive tectonic regime and thickening of the continental crust resulted in the formation of the Jiujing adakite-like granite.  相似文献   
988.
《International Geology Review》2012,54(11):1391-1408
ABSTRACT

Rocks of the early Neoproterozoic age of the world have remained in discussion for their unique identity and evolutionary history. The rocks are also present in Sindh province of Pakistan and have been in debate for a couple of years. Yet, these igneous rocks have been studied very poorly regarding U-Pb and Lu-Hf age dating. The early Neoproterozoic rocks located in Nagarparkar town of Sindh have been considered as shoulder of Malani Igneous Suite (MIS) discovered in Southwest of India. The Nagarparkar Igneous Complex (NPIC) rocks are low-grade metamorphosed, mafic and silicic rocks. These rocks are accompanied by felsic and mafic dikes. Two types of granite from NPIC have been identified as peraluminous I-type biotite granites (Bt-granites), of medium-K calc-alkaline rocks series and A-type potash granites (Kfs-granites) of high-K calc-alkaline rocks series. Geochemical study shows that these Kfs-granites are relatively high in K and Na contents and low MgO and CaO. The Bt-granites have positive Rb, Ba, and Sr with negative Eu anomalies rich with HFSEs Zr, Hf, and slightly depleted HREEs, whereas Kfs-granites have positive Rb with negative Ba, Sr, and Eu anomalies and have positive anomalies of Zr and Hf with HREEs. In addition, these rocks possess crustal material, which leads to the enrichment of some incompatible trace elements and depletion of Sr and Ba in Kfs-granites and relatively high Sr and Ba in Bt-granites, indicating a juvenile lower continental crust affinity. Zircon LA-ICP-MS U-Pb dating of these granites yielded weighted mean 206Pb/238U ages ranging from 812.3 ± 14.1 Ma (N = 18; MSWD = 3.7); and 810 ± 7.4 Ma (N = 16; MSDW = 0.36) for the Bt-granites, and 755.3 ± 7.1 Ma (N = 21; MSDW = 2.0); NP-GG-01 and 736.3 ± 4.3 Ma (N = 24; MSWD = 1.05) for Kfs-granites, respectively. The Bt-granites and Kfs-granites have positive zircon εHf(t) values, which specify that they are derived from a juvenile upper and lower continental crust. Based on the geochemical and geochronological data, we suggest that the Bt-granites were formed through lower continental crust earlier to the rifting time, whereas the Kfs-granites were formed via upper continental crust, during crustal thinning caused by Rodinia rifting. These zircon U-Pb ages 812 to 736 Ma, petrographic, and geochemical characteristics match with those of the adjacent Siwana, Jalore, Mount Abu, and Sirohi granites of MIS. Thus, we can suggest that NPIC granites and adjacent MIS can possibly be assumed as a missing link of the supercontinent Rodinia remnants.  相似文献   
989.
《International Geology Review》2012,54(13):1666-1689
ABSTRACT

The Wulonggou area in the Eastern Kunlun Orogen (EKO) in Northwest China is characterized by extensive granitic magmatism, ductile faulting, and orogenic gold mineralizations. The Shidonggou granite is located in the central part of the Wulonggou area. This study investigated the major as well as trace-element compositions, zircon U–Pb dates, and zircon Hf isotopic compositions of the Shidonggou granite. Three Shidonggou granite samples yielded an average U–Pb zircon age of 416 Ma (Late Silurian). The Late Silurian Shidonggou granite is peraluminous, with high alkali contents, high Ga/Al ratios, high (K2O + Na2O)/CaO ratios, and high Fe2O3T/MgO ratios, suggesting an A-type granite. The Shidonggou granite samples have zircon εHf(t) values ranging from ?7.1 to +4.4. The Hf isotopic data suggest that the Late Silurian granite was derived from the partial melting of Palaeo- to Mesoproterozoic juvenile mantle-derived mafic lower crust. Detailed geochronological and geochemical data suggest that the Late Silurian granite was emplaced in a post-collisional environment following the closure of the Proto-Tethys Ocean. Combining data of other A-type granitic rocks with ages of Late Early Silurian to Middle Devonian, such post-collisional setting related to the Proto-Tethys Ocean commenced at least as early as ~430 Ma (Late Early Silurian), and sustained up to ~389 Ma (Middle Devonian) in the EKO.  相似文献   
990.
扬子地台西缘淌塘花岗岩的地球化学特征及锆石U-Pb定年   总被引:2,自引:0,他引:2  
淌塘花岗岩岩体位于扬子地台西缘,岩石类型为钾长花岗岩.为了揭示其成因意义,本文对淌塘花岗岩体进行了SHRIMP锆石U-Pb定年和地球化学研究.地球化学及岩石学研究的结果显示淌塘花岗岩具有高硅(SiO2=72.70%~77.95%)、高碱(ALK=5.68% ~7.32%)、过铝质(ASI =1.41~ 1.78)的特征,K2O/Na2O平均值为1.18,CaO、MgO含量偏低,其岩石系列为高钾钙碱性系列,属于强过铝质S型花岗岩,其稀土元素含量偏低且轻重稀土元素差异较大(LREE/HREE=2.71 ~4.09),部分微量元素的含量显著区别于地壳平均值.锆石SHRIMP U-Pb定年结果获得其成岩年龄为1 063.2±6.9 Ma,属于格林威尔造山期运动产物.地球化学研究表明该花岗岩是由地壳中的泥质岩经过部分熔融形成的,其双峰式的岩浆岩组合模式和Al2O3 - SiO2构造环境判别图的投图结果均显示该花岗岩的形成与裂谷环境密切相关,这与1.0Ga时扬子地台西缘的大地构造背景相呼应,其形成也对应了Rodinia超大陆的汇聚事件.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号