首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2866篇
  免费   431篇
  国内免费   281篇
测绘学   87篇
大气科学   36篇
地球物理   1341篇
地质学   808篇
海洋学   345篇
天文学   17篇
综合类   92篇
自然地理   852篇
  2024年   13篇
  2023年   19篇
  2022年   47篇
  2021年   110篇
  2020年   138篇
  2019年   131篇
  2018年   113篇
  2017年   114篇
  2016年   107篇
  2015年   119篇
  2014年   121篇
  2013年   199篇
  2012年   109篇
  2011年   147篇
  2010年   116篇
  2009年   168篇
  2008年   170篇
  2007年   169篇
  2006年   195篇
  2005年   161篇
  2004年   134篇
  2003年   127篇
  2002年   112篇
  2001年   117篇
  2000年   86篇
  1999年   86篇
  1998年   70篇
  1997年   69篇
  1996年   48篇
  1995年   38篇
  1994年   49篇
  1993年   25篇
  1992年   22篇
  1991年   22篇
  1990年   11篇
  1989年   14篇
  1988年   9篇
  1987年   18篇
  1986年   9篇
  1985年   7篇
  1984年   10篇
  1983年   7篇
  1982年   7篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1978年   1篇
  1977年   3篇
排序方式: 共有3578条查询结果,搜索用时 250 毫秒
241.
The SHETRAN physically based, spatially distributed model is used to investigate the scaling relationship linking specific sediment yield to river basin area, for two contrasting topographies of upland and more homogeneous terrain and as a function of sediment source, land use and rainfall distribution. Modelling enables the effects of the controls to be examined on a systematic basis, while avoiding the difficulties associated with the use of field data (which include limited data, lack of measurements for nested basins and inability to isolate the effects of individual controls). Conventionally sediment yield is held to decrease as basin area increases, as the river network becomes more remote from the headwater sediment sources (an inverse relationship). However, recent studies have reported the opposite variation, depending on the river basin characteristics. The simulation results are consistent with these studies. If the sediment is supplied solely from hillslope erosion (no channel bank erosion) then, with uniform land use, sediment yield either decreases or is constant as area increases. The downstream decrease is accentuated if rainfall (and thence erosion) is higher in the headwaters than at lower elevations. Introducing a non‐uniform land use (e.g. forest at higher elevations, wheat at lower elevations) can reverse the trend, so that sediment yield increases downstream. If the sediment is supplied solely from bank erosion (no hillslope erosion), the sediment yield increases downstream for all conditions. The sediment yield/basin area relationship can thus be inverse or direct, depending on basin characteristics. There still remains, therefore, considerable scope for defining a universal scaling law for sediment yield. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
242.
Bank erosion rates and processes across a range of spatial scales are poorly understood in most environments, especially in the seasonally wet tropics of northern Australia where sediment yields are among global minima. A total of 177 erosion pins was installed at 45 sites on four sand‐bed streams (Tributaries North and Central, East Tributary and Ngarradj) in the Ngarradj catchment in the Alligator Rivers Region. Bank erosion was measured for up to 3·5 years (start of 1998/99 wet season to end of 2001/02 wet season) at three spatial scales, namely a discontinuous gully (0·6 km2) that was initiated by erosion of a grass swale between 1975 and 1981, a small continuous channel (2·5 km2) on an alluvial fan that was formed by incision of a formerly discontinuous channel between 1964 and 1978, and three medium‐sized, continuous channels (8·5–43·6 km2) with riparian vegetation. The bank erosion measurements during a period of average to above‐average rainfall established that substantial bank erosion occurred during the wet season on the two smaller channels by rapid lateral migration (Tributary Central) and by erosion of gully sidewalls due to a combination of within‐gully flows and overland flow plunging over the sidewalls (Tributary North). Minor bank erosion also occurred during the dry season by faunal activity, by desiccation and loss of cohesion of the sandy bank sediments and by dry flow processes. The larger channels with riparian vegetation (East Tributary and Ngarradj) did not generate significant amounts of sediment by bank erosion. Deposition (i.e. negative pin values) was locally significant at all scales. Bank profile form and channel planform exert a strong control on erosion rates during the wet season but not during the dry season. Copyright © 2006 Commonwealth Government of Australia.  相似文献   
243.
Relationships between riverbed morphology, concavity, rock type and rock uplift rate are examined to independently unravel the contribution of along-strike variations in lithology and rates of vertical deformation to the topographic relief of the Oregon coastal mountains. Lithologic control on river profile form is reflected by convexities and knickpoints in a number of longitudinal profiles and by general trends of concavity as a function of lithology. Volcanic and sedimentary rocks are the principal rock types underlying the northern Oregon Coast Ranges (between 46°30′ and 45°N) where mixed bedrock–alluvial channels dominate. Average concavity, θ, is 0·57 in this region. In the alluviated central Oregon Coast Ranges (between 45° and 44°N) values of concavity are, on average, the highest (θ = 0·82). South of 44°N, however, bedrock channels are common and θ = 0·73. Mixed bedrock–alluvial channels characterize rivers in the Klamath Mountains (from 43°N south; θ = 0·64). Rock uplift rates of ≥0·5 mm a−1, mixed bedrock–alluvial channels, and concavities of 0·53–0·70 occur within the northernmost Coast Ranges and Klamath Mountains. For rivers flowing over volcanic rocks θ = 0·53, and θ = 0·72 for reaches crossing sedimentary rocks. Whereas channel type and concavity generally co-vary with lithology along much of the range, rivers between 44·5° and 43°N do not follow these trends. Concavities are generally greater than 0·70, alluvial channels are common, and river profiles lack knickpoints between 44·5° and 44°N, despite the fact that lithology is arguably invariant. Moreover, rock uplift rates in this region vary from low, ≤0·5 mm a−1, to subsidence (<0 mm a−1). These observations are consistent with models of transient river response to a decrease in uplift rate. Conversely, the rivers between 44° and 43°N have similar concavities and flow on the same mapped bedrock unit as the central region, but have bedrock channels and irregular longitudinal profiles, suggesting the river profiles reflect a transient response to an increase in uplift rate. If changes in rock uplift rate explain the differences in river profile form and morphology, it is unlikely that rock uplift and erosion are in steady state in the Oregon coastal mountains. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
244.
The interaction between particle weathering and surface armouring and its effect on erosion has been investigated. The effect of soil armouring is to decrease sediment transport with time by preferentially stripping away fine particles. On the other hand the effect of weathering, which breaks down the particles in the armour, is generally believed to increase erosion. By extending an existing armouring model, ARMOUR, and using a variety of published weathering mechanisms this interaction has been explored. The model predicts that while this is generally true, in some cases erosion can be decreased by weathering. When the particles generated by weathering were approximately of equal diameter, erosion increased while armouring decreased. When weathering produced very fine particles by spalling, erosion increased and armouring also increased. When weathering produced a range of particles from fine to coarse, the armour layer broke down and erosion decreased relative to the no‐weathering case. This latter decrease in erosion was due to the high entrainment of coarser transportable materials from the bed decreasing the sediment transport capacity of the flow. In these studies clear regimes could be identified where erosion was limited by either the energy of the flow alone (i.e. ‘transport‐limited’), or the rate of weathering (‘weathering‐limited’); however, for some mechanisms there was an interaction between the two, which we called ‘weathering/transport limited’. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
245.
Soil erosion due to water is a major environmental problem in many parts of the world. Most of Mediterranean countries are concerned because of their specific climate and soils sensitivity, but also because of the recent intensification of human activities and agricultural practices. Accurate estimation of soil water erosion for various land-use and climate scenarios is so an important key to define sustainable management policies. In the last decades, several studies have been carried out to build models suitable for quantifying soil erosion. Among these models, the Water Erosion Prediction Project (WEPP, Flanagan, D.C., Nearing, M.A., 1995. USDA-Water Erosion Prediction Project: Hillslope profile and watershed model documentation. NSERL Report 10, USDA-ARS National Soil Erosion Research Laboratory, West Lafayette, IN, USA.) is a physically based, distributed-parameter model that has been developed and mainly validated in USA. Only few studies have investigated its applicability to environmental conditions that differs from those where the model was developed. The aim of this work is to test the efficiency of WEPP model to predict soil erosion at catchment scale in a Mediterranean semi-arid area. Continuous simulations have been conducted between 1995 and 2002 on an cultivated experimental catchment located upstream from a hill reservoir (Kamech catchment, 2.45 km2, Cap Bon, Tunisia) where runoff and soil erosion measurements are available at the outlet. Comparison between predictions and measurements shows significant differences. Processes related to seasonal effects (as cracking soils) are pointed out as a weakness of WEPP model for Mediterranean conditions.  相似文献   
246.
1 INTRODUCTION Soil erosion in the foothills of the Hindu Kush-Himalayas (HKH) is considered to be a hot topic in land degradation research in the region (Scherr and Yadav, 1996). The land degradation research has mainly addressed the issue of topsoil los…  相似文献   
247.
It is generally considered that four-times ice age happened during the Quaternary epoch on the Tibetan Plateau. However, the research on the chronology of the four-times ice age is far from enough. The Shaluli Mountain on the Southeastern Tibetan Plateau is an ideal place for plaeo-glacier study, because there are abundant Quaternary glacial remains there. This paper discusses the ages of the Quaternary glaciations, based on the exposure dating of roche moutonnée, moraines and gla- cial erosion surfaces using in situ cosmogenic isotopes 10Be. It is found that the exposure age of the roche moutonnée at Tuershan is 15 ka, corresponding to Stage 2 of the deep-sea oxygen isotope, suggesting that the roche moutonnée at Tuershan is formed in the last glacial maximum. The expo- sure age of glacial erosion surface at Laolinkou is 130―160 ka, corresponding to Stage 6 of the deep-sea oxygen isotope. The oldest end moraine at Kuzhaori may form at 421―766 kaBP, corre- sponding to Stages 12―18 of the deep-sea oxygen isotope. In accordance with the climate charac- teristic of stages 12,14,16 and 18 reflected by the deep-sea oxygen isotope, polar ice cores and loess sequence, the oldest end moraine at Kuzhaori may form at stage 12 or stage 16, the latter is more possible.  相似文献   
248.
249.
龚士良  杨世伦 《水文》2007,27(5):78-82
长江口入海泥沙的淤积是上海后备土地资源的重要来源,分析岸带冲淤的演变.有助于对岸带经济圈特别是围垦促淤地区因经济工程活动引发的地面沉降问题的剖析。本文以上海崇明东滩为例,分析30年来的冲淤变化及未来趋势,并据此对新近沉积土的地面沉降效应作简要阐述。  相似文献   
250.
气象灾害事件的数学形态学特征及空间表现   总被引:2,自引:1,他引:2       下载免费PDF全文
几何面特征是气象灾害的主要空间形态表现, 气象要素值的同化结果、下垫面地表类型、人口和财产的聚集特征组合在灾害特征面上的分布情况呈现显著空间差异及分布不均衡。利用空间分析和数学形态学方法, 依据城市地区复杂下垫面所表现的地表土地覆盖类型, 生成数字化动态卷积模板, 对建立在气象要素分布图上的图谱化网格进行动态膨胀和腐蚀操作, 计算结果可图形化表示为气象灾害在城市空间面上的影响图谱, 并以此作为气象灾害在城市地区造成影响的空间评估结果。针对北京1999年7月22日的高温灾害性天气的个例研究结果表明, 靠近或包含“水体”和“绿地”的空间网格区域大多被执行了腐蚀操作, 而建筑用地、道路、水泥地面等分布较集中区域的空间网格, 则被执行了膨胀操作。因此, 采用数学形态学的“面状灾害事件”空间形态特征的演算对表现灾害自然强度及评估多致灾因子下灾害的真实影响情况是非常有效的。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号