首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3310篇
  免费   516篇
  国内免费   1014篇
测绘学   129篇
大气科学   321篇
地球物理   505篇
地质学   3079篇
海洋学   233篇
天文学   130篇
综合类   175篇
自然地理   268篇
  2024年   17篇
  2023年   56篇
  2022年   101篇
  2021年   136篇
  2020年   139篇
  2019年   166篇
  2018年   121篇
  2017年   117篇
  2016年   149篇
  2015年   136篇
  2014年   163篇
  2013年   202篇
  2012年   179篇
  2011年   158篇
  2010年   146篇
  2009年   189篇
  2008年   182篇
  2007年   214篇
  2006年   202篇
  2005年   181篇
  2004年   180篇
  2003年   159篇
  2002年   156篇
  2001年   145篇
  2000年   157篇
  1999年   152篇
  1998年   117篇
  1997年   108篇
  1996年   119篇
  1995年   104篇
  1994年   90篇
  1993年   92篇
  1992年   70篇
  1991年   52篇
  1990年   43篇
  1989年   45篇
  1988年   28篇
  1987年   19篇
  1986年   17篇
  1985年   9篇
  1984年   10篇
  1983年   10篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
排序方式: 共有4840条查询结果,搜索用时 15 毫秒
161.
The partitioning of rare earth elements (REE) between zircon, garnet and silicate melt was determined using synthetic compositions designed to represent partial melts formed in the lower crust during anatexis. The experiments, performed using internally heated gas pressure vessels at 7 kbar and 900–1000 °C, represent equilibrium partitioning of the middle to heavy REE between zircon and garnet during high‐grade metamorphism in the mid to lower crust. The DREE (zircon/garnet) values show a clear partitioning signature close to unity from Gd to Lu. Because the light REE have low concentrations in both minerals, values are calculated from strain modelling of the middle to heavy REE experimental data; these results show that zircon is favoured over garnet by up to two orders of magnitude. The resulting general concave‐up shape to the partitioning pattern across the REE reflects the preferential incorporation of middle REE into garnet, with DGd (zircon/garnet) ranging from 0.7 to 1.1, DHo (zircon/garnet) from 0.4 to 0.7 and DLu (zircon/garnet) from 0.6 to 1.3. There is no significant temperature dependence in the zircon–garnet REE partitioning at 7 kbar and 900–1000 °C, suggesting that these values can be applied to the interpretation of zircon–garnet equilibrium and timing relationships in the ultrahigh‐T metamorphism of low‐Ca pelitic and aluminous granulites.  相似文献   
162.
Low‐pressure and high‐temperature (LP–HT) metamorphism of basaltic rocks, which occurs globally and throughout geological time, is rarely constrained by forward phase equilibrium modelling, yet such calculations provide valuable supplementary thermometric information and constraints on anatexis that are not possible to obtain from conventional thermometry. Metabasalts along the southern margin of the Sudbury Igneous Complex (SIC) record evidence of high‐grade contact metamorphism involving partial melting and melt segregation. Peak metamorphic temperatures reached at least ~925°C at ~1–3 kbar near the SIC contact. Preservation of the peak mineral assemblage indicates that most of the generated melt escaped from these rocks leaving a residuum characterized by a plagioclase–orthopyroxene–clinopyroxene–ilmenite‐magnetite±melt assemblage. Peak temperatures reached ~875°C up to 500 m from the SIC lower contact, which marks the transition to metabasalts that only experienced incipient partial melting without melt loss. Metabasalts ~500 to 750 m from the SIC contact are characterized by a similar two‐pyroxene mineral assemblage, but typically contain abundant hornblende that overgrew clino‐ and orthopyroxene along an isobaric cooling path. Metabasalts ~750 to 1,000 m from the SIC contact are characterized by a hornblende–plagioclase–quartz–ilmenite assemblage indicating temperatures up to ~680°C. Mass balance and phase equilibria calculations indicate that anatexis resulted in 10–20% melt generation in the inner ~500 m of the aureole, with even higher degrees of melting towards the contact. Comparison of multiple models, experiments, and natural samples indicates that modelling in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCFMASHTO) system results in the most reliable predictions for the temperature of the solidus. Incorporation of K2O in the most recent amphibole solution model now successfully predicts dehydration melting by the coexistence of high‐Ca amphibole and silicate melt at relatively low pressures (~1.5 kbar). However, inclusion of K2O as a system component results in prediction of the solidus at too low a temperature. Although there are discrepancies between modelling predictions and experimental results, this study demonstrates that the pseudosection approach to mafic rocks is an invaluable tool to constrain metamorphic processes at LP–HT conditions.  相似文献   
163.
River water temperature is a key physical variable controlling several chemical, biological and ecological processes. Its reliable prediction is a main issue in many environmental applications, which however is hampered by data scarcity, when using data‐demanding deterministic models, and modelling limitations, when using simpler statistical models. In this work we test a suite of models belonging to air2stream family, which are characterized by a hybrid formulation that combines a physical derivation of the key equation with a stochastic calibration of parameters. The air2stream models rely solely on air temperature and streamflow, and are of similar complexity as standard statistical models. The performances of the different versions of air2stream in predicting river water temperature are compared with those of the most common statistical models typically used in the literature. To this aim, a dataset of 38 Swiss rivers is used, which includes rivers classified into four different categories according to their hydrological characteristics: low‐land natural rivers, lake outlets, snow‐fed rivers and regulated rivers. The results of the analysis provide practical indications regarding the type of model that is most suitable to simulate river water temperature across different time scales (from daily to seasonal) and for different hydrological regimes. A model intercomparison exercise suggests that the family of air2stream hybrid models generally outperforms statistical models, while cross‐validation conducted over a 30‐year period indicates that they can be suitably adopted for long‐term analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
164.
Structural, petrological and textural studies are combined with phase equilibria modelling of metapelites from different structural levels of the Roc de Frausa Massif in the Eastern Pyrenees. The pre‐Variscan lithological succession is divided into the Upper, Intermediate and Lower series by two orthogneiss sheets and intruded by Variscan igneous rocks. Structural analysis reveals two phases of Variscan deformation. D1 is marked by tight to isoclinal small‐scale folds and an associated flat‐lying foliation (S1) that affects the whole crustal section. D2 structures are characterized by tight upright folds facing to the NW with steep NE–SW axial planes. D2 heterogeneously reworks the D1 fabrics, leading to an almost complete transposition into a sub‐vertical foliation (S2) in the high‐grade metamorphic domain. All structures are affected by late open to tight, steeply inclined south‐verging NW–SE folds (F3) compatible with steep greenschist facies dextral shear zones of probable Alpine age. In the micaschists of the Upper series, andalusite and sillimanite grew during the formation of the S1 foliation indicating heating from 580 to 640 °C associated with an increase in pressure. Subsequent static growth of cordierite points to post‐D1 decompression. In the Intermediate series, a sillimanite–biotite–muscovite‐bearing assemblage that is parallel to the S1 fabric is statically overgrown by cordierite and K‐feldspar. This sequence points to ~1 kbar of post‐D1 decompression at 630–650 °C. The Intermediate series is intruded by a gabbro–diorite stock that has an aureole marked by widespread migmatization. In the aureole, the migmatitic S1 foliation is defined by the assemblage biotite–sillimanite–K‐feldspar–garnet. The microstructural relationships and garnet zoning are compatible with the D1 pressure peak at ~7.5 kbar and ~750 °C. Late‐ to post‐S2 cordierite growth implies that F2 folds and the associated S2 axial planar leucosomes developed during nearly isothermal decompression to <5 kbar. The Lower series migmatites form a composite S1–S2 fabric; the garnet‐bearing assemblage suggests peak P–T conditions of >5 kbar at suprasolidus conditions. Almost complete consumption of garnet and late cordierite growth points to post‐D2 equilibration at <4 kbar and <750 °C. The early metamorphic history associated with the S1 fabric is interpreted as a result of horizontal middle crustal flow associated with progressive heating and possible burial. The upright F2 folding and S2 foliation are associated with a pressure decrease coeval with the intrusion of mafic magma at mid‐crustal levels. The D2 tectono‐metamorphic evolution may be explained by a crustal‐scale doming associated with emplacement of mafic magmas into the core of the dome.  相似文献   
165.
Staurolite–cordierite assemblages are common in mica schists of the Aston and Hospitalet gneiss domes of the central Axial Zone, Pyrenees (France, Andorra). Within a 200 m wide zone, staurolite, cordierite and andalusite porphyroblasts contain inclusion trails that preserve the same stage of development of a crenulation cleavage, strongly suggesting that all three phases are contemporaneous. Their syntectonic growth occurred during a short period at the beginning of the formation of the dominant schistosity (S2) of the domes. Staurolite and cordierite touching each other further indicates an equilibrium relationship. Whole‐rock analyses show that some staurolite–cordierite schists are depleted in K2O compared to post‐Archean shales (PAAS) and amphibolite facies pelites. Analysis of the st‐crd paragenesis in K‐poor schists without muscovite using KFMASH and MnNCKFMASH petrogentic grids, pseudosections and AFM compatibility diagrams predicts stable conditions at pressures of ~3.5 kbar at 575 °C. For metapelites with intermediate XMg values (0.7 >  XMg >0.48) a ‘muscovite‐out window’ exists from 550–650 °C at 3.5 kbar in the KFMASH system. Conventional thermobarometry (GB‐GASP, AvT‐AvP) and petrogenetic grids show an isobaric P–T path to peak temperatures of ~650 °C, supported by the presence of sillimanite‐K‐feldspar gneiss and migmatites. LP‐HT metamorphism in the Aston dome is related to early Carboniferous (c. 339 Ma) granitic intrusions into the dome core. As metamorphism is directly linked with the formation of the main S2 schistosity, the temporal relations demonstrated in this study conflict with previous studies which constrained LP‐HT metamorphism and the development of flat‐lying schistosity to the late Carboniferous (315–305 Ma) – at least in the eastern Axial Zone.  相似文献   
166.
Submarine groundwater discharge (SGD) plays an important role in coastal biogeochemical processes and hydrological cycles, particularly off volcanic islands in oligotrophic oceans. However, the spatial and temporal variations of SGD are still poorly understood owing to difficulty in taking rapid SGD measurements over a large scale. In this study, we used four airborne thermal infrared surveys (twice each during high and low tides) to quantify the spatiotemporal variations of SGD over the entire coast of Jeju Island, Korea. On the basis of an analytical model, we found a linear positive correlation between the thermal anomaly and squares of the groundwater discharge velocity and a negative exponential correlation between the anomaly and water depth (including tide height and bathymetry). We then derived a new equation for quantitatively estimating the SGD flow rates from thermal anomalies acquired at two different tide heights. The proposed method was validated with the measured SGD flow rates using a current meter at Gongcheonpo Beach. We believe that the method can be effectively applied for rapid estimation of SGD over coastal areas, where fresh groundwater discharge is significant, using airborne thermal infrared surveys.  相似文献   
167.
Submarine groundwater discharge (SGD) is a global phenomenon that carries large volumes of groundwater and dissolved chemical species such as nutrient, metals, and organic compounds to coastal zones. We report the influence of SGD on the coastal waters of Jeju Island, Korea, using high‐resolution aerial thermal infrared (TIR) mapping techniques and field investigations. An aircraft‐based system was implemented using a cost‐effective TIR camera for aerial TIR mapping. Ground‐based calibrations and system integration with GPS/IMU (global positioning system/inertial measurement unit) were performed for the aerial systems. The aerial surveys showed distinct low‐temperature signatures of SGD along the coasts of Jeju Island, revealing large groundwater inputs from the coastal aquifers to the ocean. Multiple aerial surveys over a range of seasons and tidal stages revealed that SGD rates dynamically affect the sea surface temperature (SST) of the coastal zone. The in‐situ measurements supported that SGD has a substantial influence on the coastal water chemistry as well as SST. Our observations highlight the extent to which aerial‐based TIR mapping can serve as a powerful tool for studying SGD and other coastal processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
168.
The Montagne Noire in the southernmost French Massif Central is made of an ENE‐elongated gneiss dome flanked by Palaeozoic sedimentary rocks. The tectonic evolution of the gneiss dome has generated controversy for more than half a century. As a result, a multitude of models have been proposed that invoke various tectonic regimes and exhumation mechanisms. Most of these models are based on data from the gneiss dome itself. Here, new constraints on the dome evolution are provided based on a combination of very low‐grade petrology, K–Ar geochronology, field mapping and structural analysis of the Palaeozoic western Mont Peyroux and Faugères units, which constitute part of the southern hangingwall of the dome. It is shown that southward‐directed Variscan nappe‐thrusting (D1) and a related medium‐P metamorphism (M1) are only preserved in the area furthest away from the gneiss dome. The regionally dominant pervasive tectono‐metamorphic event D2/M2 largely transposes D1 structures, comprises a higher metamorphic thermal gradient than M1 (transition low‐P and medium‐P metamorphic facies series) and affected the rocks between c. 309 and 300 Ma, post‐dating D1/M1 by more than 20 Ma. D2‐related fabrics are refolded by D3, which in its turn, is followed by dextral‐normal shearing along the basal shear zone of both units at c. 297 Ma. In the western Mont Peyroux and Faugères units, D2/M2 is largely synchronous with shearing along the southern dome margin between c. 311 and 303 Ma, facilitating the emplacement of the gneiss dome into the upper crust. D2/M2 also overlaps in time with granitic magmatism and migmatization in the Zone Axiale between c. 314 and 306 Ma, and a related low‐P/high‐T metamorphism at c. 308 Ma. The shearing that accompanied the exhumation of the dome therefore was synchronous with a peak in temperature expressed by migmatization and intrusion of melts within the dome, and also with the peak of metamorphism in the hangingwall. Both, the intensity of D2 fabrics and the M2 metamorphic grade within the hangingwall, decrease away from the gneiss dome, with grades ranging from the anchizone–epizone boundary to the diagenetic zone. The related zonation of the pre‐D3 metamorphic field gradients paralleled the dome. These observations indicate that D2/M2 is controlled by the exhumation of the Zone Axiale, and suggest a coherent kinematic between the different crustal levels at some time during D2/M2. Based on integration of these findings with regional geological constraints, a two‐stage exhumation of the gneiss dome is proposed: during a first stage between c. 316 and 300 Ma dome emplacement into the upper crust was controlled by dextral shear zones arranged in a pull‐apart‐like geometry. The second stage from 300 Ma onwards was characterized by northeast to northward extension, with exhumation accommodated by north‐dipping detachments and hangingwall basin formation along the northeastern dome margin.  相似文献   
169.
Ultrahigh temperature (UHT) granulites in the Eastern Ghats Province (EGP) have a complex P–T–t history. We review the P–T histories of UHT metamorphism in the EGP and use that as a framework for investigating the P–T–t history of Mg–Al‐rich granulites from Anakapalle, with the express purpose of trying to reconcile the down‐pressure‐dominated P–T path with other UHT localities in the EGP. Mafic granulite that is host to Mg–Al‐rich metasedimentary granulites at Anakapalle has a protolith age of c. 1,580 Ma. Mg–Al‐rich metasedimentary granulites within the mafic granulite at Anakapalle were metamorphosed at UHT conditions during tectonism at 960–875 Ma, meaning that the UHT metamorphism was not the result of contact metamorphism from emplacement of the host mafic rock. Reworking occurred during the Pan‐African (c. 600–500 Ma) event, and is interpreted to have produced hydrous assemblages that overprint the post‐peak high‐T retrograde assemblages. In contrast to rocks elsewhere in the EGP that developed post‐peak cordierite, the metasedimentary granulites at Anakapalle developed post‐peak, generation ‘2’ reaction products that are cordierite‐absent and nominally anhydrous. Therefore, rocks at Anakapalle offer the unique opportunity to quantify the pressure drop that occurred during so‐called M2 that affected the EGP. We argue that M2 is either a continuation of M1 and that the overall P–T path shape is a complex counter‐clockwise loop, or that M1 is an up‐temperature counter‐clockwise deviation superimposed on the M2 path. Therefore, rather than the rocks at Anakapalle having a metamorphic history that is apparently anomalous from the rest of the EGP, we interpret that other previously studied localities in the EGP record a different part of the same P–T path history as Anakapalle, but do not preserve a significant record of pressure decrease. This is due either to the inability of refractory rocks to extensively react to produce a rich mineralogical record of pressure decrease, or because the earlier high‐P part of the rocks history was erased by the M1 loop. Irrespective of the specific scenario, models for the tectonic evolution of the EGP must take the substantial pressure decrease during M2 into account, as it is probable the P–T record at Anakapalle is a reflection of tectonics affecting the entire province.  相似文献   
170.
Controversy over the plate tectonic affinity and evolution of the Saxon granulites in a two‐ or multi‐plate setting during inter‐ or intracontinental collision makes the Saxon Granulite Massif a key area for the understanding of the Palaeozoic Variscan orogeny. The massif is a large dome structure in which tectonic slivers of metapelite and metaophiolite units occur along a shear zone separating a diapir‐like body of high‐P granulite below from low‐P metasedimentary rocks above. Each of the upper structural units records a different metamorphic evolution until its assembly with the exhuming granulite body. New age and petrologic data suggest that the metaophiolites developed from early Cambrian protoliths during high‐P amphibolite facies metamorphism in the mid‐ to late‐Devonian and thermal overprinting by the exhuming hot granulite body in the early Carboniferous. A correlation of new Ar–Ar biotite ages with published PTt data for the granulites implies that exhumation and cooling of the granulite body occurred at average rates of ~8 mm/year and ~80°C/Ma, with a drop in exhumation rate from ~20 to ~2.5 mm/year and a slight rise in cooling rate between early and late stages of exhumation. A time lag of c. 2 Ma between cooling through the closure temperatures for argon diffusion in hornblende and biotite indicates a cooling rate of 90°C/Ma when all units had assembled into the massif. A two‐plate model of the Variscan orogeny in which the above evolution is related to a short‐lived intra‐Gondwana subduction zone conflicts with the oceanic affinity of the metaophiolites and the timescale of c. 50 Ma for the metamorphism. Alternative models focusing on the internal Variscan belt assume distinctly different material paths through the lower or upper crust for strikingly similar granulite massifs. An earlier proposed model of bilateral subduction below the internal Variscan belt may solve this problem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号