首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3310篇
  免费   516篇
  国内免费   1014篇
测绘学   129篇
大气科学   321篇
地球物理   505篇
地质学   3079篇
海洋学   233篇
天文学   130篇
综合类   175篇
自然地理   268篇
  2024年   17篇
  2023年   56篇
  2022年   101篇
  2021年   136篇
  2020年   139篇
  2019年   166篇
  2018年   121篇
  2017年   117篇
  2016年   149篇
  2015年   136篇
  2014年   163篇
  2013年   202篇
  2012年   179篇
  2011年   158篇
  2010年   146篇
  2009年   189篇
  2008年   182篇
  2007年   214篇
  2006年   202篇
  2005年   181篇
  2004年   180篇
  2003年   159篇
  2002年   156篇
  2001年   145篇
  2000年   157篇
  1999年   152篇
  1998年   117篇
  1997年   108篇
  1996年   119篇
  1995年   104篇
  1994年   90篇
  1993年   92篇
  1992年   70篇
  1991年   52篇
  1990年   43篇
  1989年   45篇
  1988年   28篇
  1987年   19篇
  1986年   17篇
  1985年   9篇
  1984年   10篇
  1983年   10篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
排序方式: 共有4840条查询结果,搜索用时 31 毫秒
151.
Introduction The velocity field of surface plate motion can be split into a poloidal and a toroidal parts.At the Earth′s surface,the toroidal component is manifested by the existence of transform faults,and the poloidal component by the presence of convergence and divergence,i.e.spreading and subduc-tion zones.They have coupled each other and completely depicted the characteristics of plate tec-tonic motions.The mechanism of poloidal field has been studied fairly clearly which is related to …  相似文献   
152.
The Menderes Massif and the overlying Lycian Nappes occupy anextensive area of SW Turkey where high-pressure–low-temperaturemetamorphic rocks occur. Precise retrograde PT pathsreflecting the tectonic mechanisms responsible for the exhumationof these high-pressure–low-temperature rocks can be constrainedwith multi-equilibrium PT estimates relying on localequilibria. Whereas a simple isothermal decompression is documentedfor the exhumation of high-pressure parageneses from the southernMenderes Massif, various PT paths are observed in theoverlying Karaova Formation of the Lycian Nappes. In the uppermostlevels of this unit, far from the contact with the MenderesMassif, all PT estimates depict cooling decompressionpaths. These high-pressure cooling paths are associated withtop-to-the-NNE movements related to the Akçakaya shearzone, located at the top of the Karaova Formation. This zoneof strain localization is a local intra-nappe contact that wasactive in the early stages of exhumation of the high-pressurerocks. In contrast, at the base of the Karaova Formation, alongthe contact with the Menderes Massif, PT calculationsshow decompressional heating exhumation paths. These paths areassociated with severe deformation characterized by top-to-the-eastshearing related to a major shear zone (the Gerit shear zone)that reflects late exhumation of high-pressure parageneses underwarmer conditions. KEY WORDS: exhumation; high-pressure–low-temperature metamorphism; multi-equilibrium PT estimates; Lycian Nappes; Menderes Massif  相似文献   
153.
The Kyffhäuser Crystalline Complex, Central Germany, formspart of the Mid-German Crystalline Rise, which is assumed torepresent the Variscan collision zone between the East Avalonianterrane and the Armorican terrane assemblage. High-precisionU–Pb zircon and monazite dating indicates that sedimentaryrocks of the Kyffhäuser Crystalline Complex are youngerthan c. 470 Ma and were intruded by gabbros and diorites between345 ± 4 and 340 ± 1 Ma. These intrusions had magmatictemperatures between 850 and 900°C, and caused a contactmetamorphic overprint of the sediments at PT conditionsof 690–750°C and 5–7 kbar, corresponding toan intrusion depth of 19–25 km. At 337 ± 1 Ma themagmatic–metamorphic suite was intruded by granites, syenitesand diorites at a shallow crustal level of some 7–11 km.This is inferred from a diorite, and conforms to PT pathsobtained from the metasediments, indicating a nearly isothermaldecompression from 5–7 to 2–4 kbar at 690–750°C.Subsequently, the metamorphic–magmatic sequence underwentaccelerated cooling to below 400°C, as constrained by garnetgeospeedometry and a previously published K–Ar muscoviteage of 333 ± 7 Ma. With respect to PTDtdata from surrounding units, rapid exhumation of the KCC canbe interpreted to result from NW-directed crustal shorteningduring the Viséan. KEY WORDS: contact metamorphism; U–Pb dating; hornblende; garnet; Mid-German Crystalline Rise; PT pseudosection  相似文献   
154.
甘肃春季(3~5月)沙尘暴成因分析   总被引:3,自引:7,他引:3  
甘肃春季(3~5月)沙尘暴小波变换分析清楚地反映了甘肃春季沙尘暴不同时间尺度周期振荡的交替作用。甘肃中西部自20世纪80年代以来变暖,其变暖与太阳黑子周期长度(SCL)密切相关。甘肃春季沙尘暴与甘肃中西部热力因子和降水研究表明,当冬季冷空气活动频繁,春季气温回升快,气温波动幅度大,降水偏少,甘肃春季容易发生沙尘暴。  相似文献   
155.
To accurately predict soil volume changes under thermal cycles is of great importance for analysing the performance of many earth structures such as the energy pile and energy storage system. Most of the existing thermo‐mechanical models focus on soil behaviour under monotonic thermal loading only, and they are not able to capture soil volume changes under thermal cycles. In this study, a constitutive model is proposed to simulate volume changes of saturated soil subjected to cyclic heating and cooling. Two surfaces are defined and used: a bounding surface and a memory surface. The bounding surface and memory surface are mainly controlled by the preconsolidation pressure (a function of plastic volumetric strain) and the maximum stress experienced by the soil, respectively. Under thermal cycles, the distance of the two surfaces and plastic modulus increase with an accumulation of plastic strain. By adopting the double surface concept, a new elastoplastic model is derived from an existing single bounding surface thermo‐mechanical model. Comparisons between model predictions and experimental results reveal that the proposed model is able to capture soil volume changes under thermal cycles well. The plastic strain accumulates under thermal cycles, but at a decreasing rate, until stabilization. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
156.
Microlites (minute spherulitic, dendritic, skeletal, acicular and poikilitic crystals) diagnostic of crystallization in quenched melt or glass in fault rocks have been used to infer fossil earthquakes. High‐P microlites and crystallites are described here in a variably eclogitized gabbro, the wallrock to the coesite‐bearing eclogite breccia at Yangkou in the Chinese Su‐Lu high‐P metamorphic belt. The studied hand specimens are free of discernible shear deformation, although microfractures are not uncommon under the microscope. In the least eclogitized gabbro, the metagabbro, stellate growths of high‐P minerals on the relict igneous minerals are common. Dendritic garnet crystals (<1?5 μm) grew around rutile and/or phengite replacing ilmenite and biotite, respectively. Skeletal garnet also rims broken flakes of igneous biotite and mechanically twinned augite. Radial intergrowths of omphacite and quartz developed around relict igneous orthopyroxene and are rimmed by skeletal or poikilitic garnet where a Ti‐bearing mineral relict is present. Acicular epidote, kyanite and phengite crystallites are randomly distributed in a matrix of Na‐rich plagioclase, forming the pseudomorphs after igneous plagioclase. In the more eclogitized gabbro, the coronitic eclogite located closer to the eclogite breccia, all the igneous minerals broke down into high‐P assemblages. Thick coronas of poikilitic garnet grew between the pseudomorphs after igneous plagioclase and ferromagnesian minerals. The igneous plagioclase is replaced by omphacite crystallites, with minor amounts of phengite and kyanite. Thermodynamic modelling of the plagioclase pseudomorphs shows an increase in P–T in the wallrock from the metagabbro to the coronitic eclogite, and the P–T variation is unrelated to H2O content. The fluid‐poor pressure overstepping scenario is unsupported both by phase diagram modelling and by whole‐rock chemical data, which show that the various types of eclogitized gabbro are all fairly dry. A large pressure difference of >2 GPa between the metagabbro and the coesite‐bearing eclogites ~20 m apart cannot be explained by the subduction hypothesis because this would require a depth difference of >60 km. The microlites and crystallites are evidence for dynamic crystallization due to rapid cooling because constitutional supercooling was unlikely for the plagioclase pseudomorphs. The lack of annealing of the broken biotite and augite overgrown by strain free skeletal garnet is consistent with a transient high‐P–T event at a low ambient temperature (<300 °C), probably in the crust. Therefore, the eclogitization of the wallrock to the eclogite breccia was also coseismic, as proposed earlier for the eclogite facies fault rocks. The outcrop‐scale P–T variation and the transient nature of the high‐P–T event are inconsistent with the other existing tectonic models for high‐P metamorphism. The fact that the less refractory but denser biotite is largely preserved while the more refractory but less dense plagioclase broke down completely into high‐P microlite assemblages in the metagabbro indicates a significant rise in pressure rather than temperature. Given that the metamorphic temperatures are far below the melting temperatures of most of the gabbroic minerals under fluid‐absent conditions, stress‐induced amorphization appears to be the more likely mechanism of the coseismic high‐P metamorphism.  相似文献   
157.
Geothermobarometric and geochronological work indicates a complete Eocene/early Oligocene blueschist/greenschist facies metamorphic cycle of the Cycladic Blueschist Unit on Naxos Island in the Aegean Sea region. Using the average pressure–temperature (P–T) method of thermocalc coupled with detailed textural work, we separate an early blueschist facies event at 576 ± 16 to 619 ± 32°C and 15.5 ± 0.5 to 16.3 ± 0.9 kbar from a subsequent greenschist facies overprint at 384 ± 30°C and 3.8 ± 1.1 kbar. Multi‐mineral Rb–Sr isochron dating yields crystallization ages for near peak‐pressure blueschist facies assemblages between 40.5 ± 1.0 and 38.3 ± 0.5 Ma. The greenschist facies overprint commonly did not result in complete resetting of age signatures. Maximum ages for the end of greenschist facies reworking, obtained from disequilibrium patterns, cluster near c. 32 Ma, with one sample showing rejuvenation at c. 27 Ma. We conclude that the high‐P rocks from south Naxos were exhumed to upper mid‐crustal levels in the late Eocene and early Oligocene at rates of 7.4 ± 4.6 km/Ma, completing a full blueschist‐/greenschist facies metamorphic cycle soon after subduction within c. 8 Ma. The greenschist facies overprint of the blueschist facies rocks from south Naxos resulted from rapid exhumation and associated deformation/fluid‐controlled metamorphic re‐equilibration, and is unrelated to the strong high‐T metamorphism associated with the Miocene formation of the Naxos migmatite dome. It follows that the Miocene thermal overprint had no impact on rock textures or Sr isotopic signatures, and that the rocks of south Naxos underwent three metamorphic events, one more than hitherto envisaged.  相似文献   
158.
Polymetamorphic garnet micaschists from the Austroalpine Saualpe Eclogite Unit (Kärnten, Austria, Eastern Alps) display complex microstructural and mineral–chemical relationships. Automated scanning electron microscopy routines with energy dispersive X‐ray (EDX) spectral mapping were applied for monazite detection and garnet mineral–chemical characterization. When the Fe, Mg, Mn and Ca element wt% compositions are used as generic labels for garnet EDX spectra, complex zonations and porphyroblast generations can be resolved in complete thin sections for selective electron‐microprobe analyses. Two garnet porphyroblast generations and diverse monazite age populations have been revealed in low‐Ca and high‐Al‐metapelites. Garnet 1 has decreasing Mn, constant Ca and significantly increasing Mg from cores to rims. Geothermobarometry of garnet 1 assemblages signals a crystallization along a M1 prograde metamorphism at ~650 °C/6–8 kbar. Sporadic monazite 1 crystallization started at c. 320 Ma. Subsequent pervasive 300–250 Ma high‐Y and high‐Gd monazite 1 formation during decompression coincided with the intrusion of Permian and Early Triassic pegmatites. Monazite 1 crystallized along the margin of garnet 1. Coronas of apatite and allanite around the large 320–250 Ma monazite signal a retrogressive stage. These microstructures suggest a Carboniferous‐to‐Early‐Permian age for the prograde M1 event with garnet 1. Such a M1 event at an intermediate‐P/T gradient has not yet been described from the Saualpe, and preceded a Permo‐Triassic low‐P stage. The M2 event with garnet 2 postdates the corona formation around Permian monazite. Garnet 2 displays first increasing XCa at decreasing XMg, then increasing XCa and XMg, and finally decreasing XCa with increasing XMg, always at high Ca and Mg, and low Mn. This records a P–T evolution which passed through eclogite facies conditions and reached maximum temperatures at ~750 °C/14 kbar during decompression‐heating. A monazite 2 population (94–86 Ma) with lower Y and Gd contents crystallized at decreasing pressure during the Cretaceous (Eo‐Alpine) metamorphism M2 at a high‐P/T gradient. The Saualpe Eclogite Unit underwent two distinct clockwise metamorphic cycles at different P–T conditions, related to continental collisions under different thermal regimes. This led to a characteristic distribution pattern of monazite ages in this unit which is different from other Austroalpine basement areas.  相似文献   
159.
160.
We report the first finding of diamond and moissanite in metasedimentary crustal rocks of Pohorje Mountains (Slovenia) in the Austroalpine ultrahigh‐pressure (UHP) metamorphic terrane of the Eastern Alps. Microscopic observations and Raman spectroscopy show that diamond occurs in situ as inclusions in garnet, being heterogeneously distributed. Under the optical microscope, diamond‐bearing inclusions are of cuboidal to rounded shape and of pinkish, yellow to brownish colour. The Raman spectra of the investigated diamond show a sharp, first order peak of sp3‐bonded carbon, in most cases centred between 1332 and 1330 cm?1, with a full width at half maximum between 3 and 5 cm?1. Several spectra show Raman bands typical for disordered graphitic (sp2‐bonded) carbon. Detailed observations show that diamond occurs either as a monomineralic, single‐crystal inclusion or it is associated with SiC (moissanite), CO2 and CH4 in polyphase inclusions. This rare record of diamond occurring with moissanite as fluid‐inclusion daughter minerals implies the crystallization of diamond and moissanite from a supercritical fluid at reducing conditions. Thermodynamic modelling suggests that diamond‐bearing gneisses attained P–T conditions of ≥3.5 GPa and 800–850 °C, similar to eclogites and garnet peridotites. We argue that diamond formed when carbonaceous sediment underwent UHP metamorphism at mantle depth exceeding 100 km during continental subduction in the Late Cretaceous (c. 95–92 Ma). The finding of diamond confirms UHP metamorphism in the Pohorje Mountains, the most deeply subducted part of Austroalpine units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号