首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60163篇
  免费   10520篇
  国内免费   14059篇
测绘学   4856篇
大气科学   6443篇
地球物理   11355篇
地质学   38085篇
海洋学   7261篇
天文学   2325篇
综合类   4191篇
自然地理   10226篇
  2024年   224篇
  2023年   579篇
  2022年   1602篇
  2021年   1962篇
  2020年   2009篇
  2019年   2411篇
  2018年   1950篇
  2017年   2215篇
  2016年   2391篇
  2015年   2566篇
  2014年   3217篇
  2013年   3241篇
  2012年   3628篇
  2011年   3906篇
  2010年   3292篇
  2009年   3987篇
  2008年   3908篇
  2007年   4325篇
  2006年   4281篇
  2005年   3731篇
  2004年   3564篇
  2003年   3345篇
  2002年   2977篇
  2001年   2601篇
  2000年   2418篇
  1999年   2207篇
  1998年   1855篇
  1997年   1708篇
  1996年   1553篇
  1995年   1299篇
  1994年   1263篇
  1993年   1082篇
  1992年   846篇
  1991年   612篇
  1990年   510篇
  1989年   451篇
  1988年   312篇
  1987年   203篇
  1986年   137篇
  1985年   90篇
  1984年   38篇
  1983年   31篇
  1982年   33篇
  1981年   24篇
  1980年   25篇
  1979年   32篇
  1978年   40篇
  1977年   25篇
  1975年   4篇
  1954年   15篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
401.
“大洋一号”勘查技术体系的设计与建设   总被引:1,自引:0,他引:1  
周宁 《海洋学研究》2005,23(4):61-65
介绍了"大洋一号"远洋科学考察船在近1年的改装施工后所建立的现代化船舶勘查技术体系.由于引进了世界先进的调查设备,自主研发和改造了深海浅地层岩芯钻等大型调查设备,自主设计并完成了网络信息集成系统,同时对实验室、住舱等工作、生活环境进行了改造,"大洋一号"远洋科学考察船已集成了具有高精度水下定位、全覆盖地形地貌、可视化海底取样、地球物理(重、磁、震、浅地层)、深拖(声学、光学)、成矿环境(水文、化学)和生物等专业设备的联合探测分析系统,实现了各系统的科学同步作业和信息融合,大大提高了我国海洋科学考察工作的效率和管理水平,使我国的深海探测技术和方法基本实现了与国际接轨.  相似文献   
402.
秋季黄海中南部鱼类群落对饵料生物的摄食量   总被引:8,自引:0,他引:8  
研究鱼类与饵料生物之间食物定量关系进而为多鱼种资源评估提供依据,2000~2002年秋季(10~11月)在黄海中南部海域进行了定点底拖网调查,应用Eggers模型,计算了带鱼(Trichiurus lepturus)、小黄鱼(Pseudosciaena polyactis)、黄(Lophius litulon)、细纹狮子鱼(Liparis tanakae)等23种鱼类在秋季对饵料生物的摄食量。结果表明:黄海中南部23种鱼类在秋季对饵料生物的总摄食量约为309万t,其中,鱼(Engraulis japonicus)的摄食量最高(在250万t以上),占总摄食量的80.9%。中上层和底层鱼类对饵料生物的摄食量分别为262万t和47万t左右,占总摄食量的84.7%和15.3%,鱼和细纹狮子鱼分别是中上层和底层鱼类中最主要的捕食者。磷虾类是中上层鱼类最主要的食物来源,其次是桡足类、端足类和毛颚类;虾类和鱼类是底层鱼类最主要的食物来源,其次是磷虾类。太平洋磷虾(Euphausia pacifica)、中华哲水蚤(Calanus sinicus)、细长脚虫戎(Themisto gracilipes)、脊腹褐虾(Crangon affinis)和鱼同时是黄海中南部被摄食量最高的5种饵料生物,它们被摄食的生物量之和约为233万t,占总摄食量的75.5%。  相似文献   
403.
The aim of this paper is to investigate the shape and tension distribution of fishing nets in current. A numerical model is developed, based on lumped mass method to simplify the net. The motion equation is set up for each lumped mass. The Runge–Kutta–Verner fifth-order and sixth-order method is used to solve these simultaneous equations, and then the displacement and tension of each lumped mass are obtained. In order to verify the validity of the numerical method, model tests have been carried out. The results by the numerical simulation agree well with the experimental data.  相似文献   
404.
Based on Hong‘s theory, previous random models, and a generalized expression suitable for FIT calculation, the interaction between irregular waves and vertical walls is numerically simulated. The results of simulation demonstrate that the wave energy changes with the incidence angle and the distance from the wall. Particularly, the Mach effect and the combined wave spectrum characteristics are analyzed in detail, which are significant in both theory and practice.  相似文献   
405.
More and more researches show that neither the critical downward acceleration nor the critical slope of water waves is a universal constant. On the contrary, they vary with particular wave conditions. This fact moders the models either for the probability of wave breaking B or for the whitecap coverage W based on these criteria difficult to apply. In this paper and the one which follows we seek to develop models for the prediction of both B and W based on the kinematical criterion. First, several joint probabihstic distribution functions (PDFs) of wave characteristics are derived, based on which the breaking properties B and W are estimated. The estimation is made on the assumption that a wave breaks ff the horizontal velocity of water particles at its crest exceeds the local wave celerity, and whitecapping occurs in regions of fluid where water particles travel faster than the waves. The consequent B and W depend on wave spectral moments of orders 0 to 4.Then the JONSWAP spectrum is used to represent the fetch-limited sea waves in deep water, so as to relate the probahility of wave breaking and the whitecap coverage with wind parameters. To this end, the time-averaging technique proposed by Glazman (1986) is applied to the estimation of the spectral moments involved, and furthermore, the theoretical models are compared with available observations collected from published literature. From the comparison, the averaging time scale is determined. The final models show that the probability of wave breaking as well as the whitecap coverage depends on the dimensionless fetch. The agreement between these models and the database is reasonable.  相似文献   
406.
Crustal Thinning of the Northern Continental Margin of the South China Sea   总被引:2,自引:0,他引:2  
Magnetic data suggest that the distribution of the oceanic crust in the northern South China Sea (SCS) may extend to about 21 °N and 118.5 °E. To examine the crustal features of the corresponding continent–ocean transition zone, we have studied the crustal structures of the northern continental margin of the SCS. We have also performed gravity modeling by using a simple four-layer crustal model to understand the geometry of the Moho surface and the crustal thicknesses beneath this transition zone. In general, we can distinguish the crustal structures of the study area into the continental crust, the thinned continental crust, and the oceanic crust. However, some volcanic intrusions or extrusions exist. Our results indicate the existence of oceanic crust in the northernmost SCS as observed by magnetic data. Accordingly, we have moved the continent–ocean boundary (COB) in the northeastern SCS from about 19 °N and 119.5 °E to 21 °N and 118.5 °E. Morphologically, the new COB is located along the base of the continental slope. The southeastward thinning of the continental crust in the study area is prominent. The average value of crustal thinning factor of the thinned continental crust zone is about 1.3–1.5. In the study region, the Moho depths generally vary from ca. 28 km to ca. 12 km and the crustal thicknesses vary from ca. 24 km to ca. 6 km; a regional maximum exists around the Dongsha Island. Our gravity modeling has shown that the oceanic crust in the northern SCS is slightly thicker than normal oceanic crust. This situation could be ascribed to the post-spreading volcanism or underplating in this region.  相似文献   
407.
Abstract

Palar basin is located between Pennar and Cauvery sedimentary basins of East coast of India in Bay of Bengal, northeast Indian Ocean. Sea floor drill (Wire-line Autonomous Coring System – WACS) with operational capability of up to 3000?m water depth was developed to collect long cores from deep sea floor for geotechnical and ocean resource assessment studies. During the drilling operation it encountered Nummulitic coralline limestone of Lower Eocene age at 18 meters below the seafloor (mbsf) at 850?m water depth indicating carbonated platform presence for the first time at the study region. Bathymetry contour from Naval Hydrography Chart and General Bathymetric Chart of the Oceans (GEBCO) has revealed the presence of shallow mounds from 50 to 200?m depth closure contour near the sampling site at 850?m water depth which might be a submerged carbonated structure. Since, Nummulites are shallow water dwelling fauna (<20?m depth) but its occurrence at 18 mbsf in 850?m water depth is recorded because of the advancement in technology tool for long core sampling by means of sea floor drill.  相似文献   
408.
Deep seawater in the ocean contains a great deal of nutrients. Stommel et al. have proposed the notion of a “perpetual salt fountain” (Stommel et al., 1956). They noted the possibility of a permanent upwelling of deep seawater with no additional external energy source. If we can cause deep seawater to upwell extensively, we can achieve an ocean farm. We have succeeded in measuring the upwelling velocity by an experiment in the Mariana Trench area using a special measurement system. A 0.3 m diameter, 280 m long soft pipe made of PVC sheet was used in the experiment. The measured data, a verification experiment, and numerical simulation results, gave an estimate of upwelling velocity of 212 m/day. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
409.
Abstract.  Rhodoliths provide a stable and three-dimensional habitat to which other seaweeds and invertebrates can attach. Although ecological factors affecting rhodolith beds have been studied, little is known about the effect of rhodolith species and growth-form on associated fauna. Experiments were conducted at three rhodolith beds in the central-west Gulf of California. Faunal abundance differed significantly in relation to rhodolith-forming species, but no significant differences were observed between different growth-forms. Rhodolith structure differs between the species Lithophyllum margaritae and Neogoniolithon trichotomum , and the combination of structure differences and rhodolith abundances may be responsible of the significant differences in faunal abundance and richness. Crustaceans, polychaetes and molluscs were the most important taxa in all three rhodolith beds. The amphipod species Pontogeneia nasa and the cnidarian Aiptasia sp. were dominant in both rhodolith beds, El Requesón and Isla Coyote, in Bahía Concepción. The Isla Coronados rhodolith bed was dominated by an unidentified harpacticoid copepod (Copepoda sp.1). Rhodolith species is more important than growth-form in determining abundance and richness of the associated fauna. Nevertheless, factors such as wave motion, depth, bioturbation and others should be considered when studying organisms associated with rhodolith beds.  相似文献   
410.
Most marginal seas in the North Pacific are fed by nutrients supported mainly by upwelling and many are undersaturated with respect to atmospheric CO2 in the surface water mainly as a result of the biological pump and winter cooling. These seas absorb CO2 at an average rate of 1.1 ± 0.3 mol C m−2yr−1 but release N2/N2O at an average rate of 0.07 ± 0.03 mol N m−2yr−1. Most of primary production, however, is regenerated on the shelves, and only less than 15% is transported to the open oceans as dissolved and particulate organic carbon (POC) with a small amount of POC deposited in the sediments. It is estimated that seawater in the marginal seas in the North Pacific alone may have taken up 1.6 ± 0.3 Gt (1015 g) of excess carbon, including 0.21 ± 0.05 Gt for the Bering Sea, 0.18 ± 0.08 Gt for the Okhotsk Sea; 0.31 ± 0.05 Gt for the Japan/East Sea; 0.07 ± 0.02 Gt for the East China and Yellow Seas; 0.80 ± 0.15 Gt for the South China Sea; and 0.015 ± 0.005 Gt for the Gulf of California. More importantly, high latitude marginal seas such as the Bering and Okhotsk Seas may act as conveyer belts in exporting 0.1 ± 0.08 Gt C anthropogenic, excess CO2 into the North Pacific Intermediate Water per year. The upward migration of calcite and aragonite saturation horizons due to the penetration of excess CO2 may also make the shelf deposits on the Bering and Okhotsk Seas more susceptible to dissolution, which would then neutralize excess CO2 in the near future. Further, because most nutrients come from upwelling, increased water consumption on land and damming of major rivers may reduce freshwater output and the buoyancy effect on the shelves. As a result, upwelling, nutrient input and biological productivity may all be reduced in the future. As a final note, the Japan/East Sea has started to show responses to global warming. Warmer surface layer has reduced upwelling of nutrient-rich subsurface water, resulting in a decline of spring phytoplankton biomass. Less bottom water formation because of less winter cooling may lead to the disappearance of the bottom water as early as 2040. Or else, an anoxic condition may form as early as 2200 AD. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号