首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   735篇
  免费   126篇
  国内免费   131篇
测绘学   12篇
大气科学   4篇
地球物理   268篇
地质学   534篇
海洋学   52篇
天文学   5篇
综合类   56篇
自然地理   61篇
  2024年   3篇
  2023年   3篇
  2022年   13篇
  2021年   20篇
  2020年   14篇
  2019年   37篇
  2018年   17篇
  2017年   24篇
  2016年   24篇
  2015年   30篇
  2014年   39篇
  2013年   67篇
  2012年   39篇
  2011年   27篇
  2010年   31篇
  2009年   55篇
  2008年   74篇
  2007年   41篇
  2006年   38篇
  2005年   37篇
  2004年   47篇
  2003年   27篇
  2002年   42篇
  2001年   26篇
  2000年   23篇
  1999年   23篇
  1998年   13篇
  1997年   16篇
  1996年   23篇
  1995年   22篇
  1994年   11篇
  1993年   19篇
  1992年   15篇
  1991年   14篇
  1990年   10篇
  1989年   3篇
  1988年   9篇
  1987年   3篇
  1986年   8篇
  1985年   2篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有992条查询结果,搜索用时 15 毫秒
81.
Many observations and studies indicate that pore fluid pressure in the crustal rocks plays an important role in deformation, faulting, and earthquake processes. Conventional models of pore pressure effects often assume isotropic porous rocks and yield the nondeviatoric pressure effects which seem insufficient to explain diverse phenomena related to pore pressure variation, such as fluid-extraction induced seismicity and crustal weak faults. We derive the anisotropic effective stress law especially for transversely-isotropic and orthotropic rocks, and propose that the deviatoric effects of pore fluid pressure in anisotropic rocks not only affect rock effective strength but also cause variation of shear stresses. Such shear stress variations induced by either pore pressure buildup or pore pressure decline may lead to faulting instability and trigger earthquakes, and provide mechanisms for the failure of crustal weak faults with low level of shear stresses. We believe that the deviatoric effects of pore fluid pressure in anisotropic rocks are of wide application in studies of earthquake precursors and aftershocks, oil and gas reservoir characterization, enhanced oil recovery, and hydraulic fracturing.  相似文献   
82.
塔里木盆地走滑断裂带与油气聚集关系的探讨   总被引:1,自引:1,他引:1  
汤良杰 《地球科学》1992,17(4):403-410
  相似文献   
83.
Sixty five per cent of the Paleozoic basement of western and central Europe is hidden by a sedimentary cover and/or sea. This work aims to remove that blanket to detect new structures which could used to build a more comprehensive model of the Variscan orogeny. It is based on the interpretation of various forms of data: (a) published gravity maps corrected for the effects of the crust-mantle boundary topography and light sedimentary basins; (b) aeromagnetic maps; (c) measurements of densities; and (d) induced and remanent magnetizations on rocks from Paleozoic outcrops of the upper Rhenish area. From the northern Bohemian Massif to the eastern Paris Basin, the Saxothuringian is characterized by a 500 km long belt of gravity highs, the most important being the Kraichgau high. Most of the corresponding heavy bodies are buried under a post-early Viséan cover. They are interpreted as relics of Late Proterozoic terranes overlain by an Early to Middle Paleozoic sequence, equivalent to the Bohemian terrane in the Bohemian Massif. The most probable continuation of these dense Bohemian terranes toward the west is the Southern Channel-Northern Brittany Cadomian terrane. The gravity lows are correlated with Variscan granites and pre- and early Variscan metagranites.Gravity and magnetic maps demonstrate large-scale displacement in Devonian-Early Carboniferous times along the parallel and equidistant, NW-SE striking, Vistula, Elbe, Bavarian, Bray and South Armorican dextral wrench faults. In the Vosges-Schwarzwald and Central Massif the faults continue with the east-west striking Lalaye-Lubine-Baden-Baden and Marche faults and with south vergent thrusts. The Bavarian faults shift the Kraichgau terrane by 150 km relative to the Bohemian terrane, whereas the offset of the Northern Brittany Cadomian relative to the Northern Vosges-Kraichgau terranes is estimated at 400 km along the Bray fault. Sinistral wrench faults are the NE-SW striking Sillon Houiller, Rheingraben, Rodl, Vitis and Diendorf faults. The southern Vosges-Schwarzwald Devonian-Dinantian basin is interpreted as a pull-apart basin at the south-easterly extremity of the Bray fault. The Bohemian and Kraichgau body form allochthonous terranes which were thrust over the Saxothuringian crust. Thrusting to the north-west was accompanied by back-thrusting and led to the formation of pop-up structures. Contemporaneous dextral and sinistral wrench faulting resulted in transpressive strain during collision. The zonal structure of the Variscides in the sense of Kossmat (1927) is relevant only to the Rhenohercynian Foreland Belt. Kossmat (1927) already spoke of a Moldanubian Region because it displays no real zonal structure. The Saxothuringian Zone was formed by terrane accretion. Their apparent zonal structure is not a pre-collisional feature, but only the result of accretion and collision.  相似文献   
84.
This study Investigates a tracing method using dissolved noble gases to survey the groundwater flow in a large groundwater basin. The tracing method is based on measuring the concentrations of noble gases and the ratio of helium isotopes in groundwater samples. Since it is very difficult to detect trace amounts of noble gases and helium with high accuracy in a 15-ml groundwater sample, dissolved gases were extracted and purified, then a high-resolution mass spectrometer was used for measurement and comparison with standard samples. We used this method with samples from a confined aquifer formed by the deposition of pyroclastic flow in the Kumamoto Plain on the west side of Mt. Aso in central Kyushu, Japan. The groundwater basin under the plain is divided into four small basins, based on the helium concentrations and isotope ratios, with two major groundwater flows. One flow is buried by the Aso pyroclastic flow along the old Kase River; the other is along the Tsuboi River Valley. These two groundwater flows were identified from the different helium isotope-ratios. The helium component from the deep mantle is mixed into the groundwater under the Kumamoto Plain. Finally, data on the concentrations and ratios of3He to4He in groundwater samples were used to determine the location of faults in the volcanic aquifer.  相似文献   
85.
阿尔泰地区存在 5条与深大断裂有关的基性、超基性岩带 ,是铜镍硫化物矿床产出的有利地段 ,其中喀拉通克铜镍矿是我国大型铜镍矿之一。通过对成矿必要条件的深入研究 ,得出深大断裂及其次级断裂控制了岩体的产出 ,北北西向断裂叠加北西向断裂控制了矿体的产出 ;成矿充分条件是基性、超基性岩体 ,总结了岩体含矿性的评价指标。结合重磁及地化资料 ,在喀拉通克铜镍矿的成矿模式基础上 ,建立了区域综合信息找矿模型 ,进行成矿预测 ,圈定靶区 9处。  相似文献   
86.
青藏铁路唐古拉山-拉萨段全新世控震断裂研究   总被引:8,自引:0,他引:8  
地表调查表明,沿青藏铁路唐古拉山-拉萨段存在5条重要的全新世控震断裂带,从北到南分别是温泉盆地西缘断裂带、安多盆地北缘断裂带、崩错断裂带、谷露西缘断裂带和当雄-羊八井断裂带.构造-地貌和年代学分析结果表明,北部的温泉盆地西缘断裂和安多盆地北缘断裂带的活动强度相对比较小,平均垂直活动速率约为0.2~0.5mm/a.南侧的谷露西缘断裂带和当雄-羊八井断裂带的全新世垂直活动速率为约(15±0.5)mm/a.而中部的崩错走滑断裂带的活动强度最大,晚第四纪期间的走滑速率可达(11±4.5)mm/a.全新世断裂活动和古地震研究表明,其中温泉盆地西缘断裂带、安多盆地北缘断裂带、崩错断裂带的西北分支、当雄-羊八井断裂带的当雄段等区域未来发生强震的概率相对更大.  相似文献   
87.
Two types of tectonic deformations indicating different geodynamic settings are defined in the southwestern Primorye region. Near-latitudinal compression forces were responsible for the oldest, Late Paleozoic deformations. The Permian stratified complexes host a near-meridional system of folds and zones of dynamothermal metamorphism, cleavage, and foliation oriented orthogonally relative to the compression. Late Proterozoic (?) mafic-ultramafic rocks are characterized by similar deformations. In the Late Permian, the deformations were accompanied by granitoid magmatism controlled by fold and cleavage structures. The younger, Mesozoic deformations produced by near-meridional compression are represented by NE-trending sinistral strike-slip faults and their structural parageneses: an ENE-trending system of folds and downdip-thrusts both superimposed on Paleozoic protostructures and manifested in Mesozoic and Cenozoic sequences. It is inferred that, at the Paleozoic-Mesozoic boundary, near-latitudinal compression was replaced by near-meridional compression, probably, in response to the corresponding change in direction of the lateral displacement of the interacting Asian continent and (or) Pacific Plate.  相似文献   
88.
89.
Fractalanalysisappliedtofaultsandearthquakes———AcasestudyofChinaJIANWANG(王建)XIAOHUAZHU(朱晓华)YONGHUIXU(徐永辉)DepartmentofGeog...  相似文献   
90.
This paper presents the results of a detailed structural analysis of the northern Nijar and southern Vera basins with special emphasis on the evolution of the regional stress field and the associated timing of movement of the Serrata, Gafarillos and Palomares strike-slip fault zones. These major fault zones control the Neogene deformation of the SE Internal Betic Cordilleras in Spain. Detailed stress analysis on Neogene sediments of the Vera and Nijar basins shows a strike-slip regime with NW–SE-oriented subhorizontal maximum principal stress (σ1) during Tortonian and earliest Messinian times. Under the influence of this stress field, dextral displacement along the N090E-trending Gafarillos fault zone resulted in deformation of the sediments of the southern Sorbas and northeastern Nijar basins. During the early Messinian a clock-wise rotation of the stress field occurred. Stress analysis in rocks with late–early Messinian up to Quaternary ages in the Nijar and Vera basins indicates a strike-slip regime with N–S-oriented subhorizontal maximum principal stress (σ1). Under the influence of this stress field the main activity along the N010E-striking Palomares strike-slip fault zone took place, resulting in deformation of the Neogene sediments of the southeastern Vera basin and culminating in a maximum sinistral displacement of more than 20 km. At the same time the stress field was not suitably oriented to exert a large shear component on the Gafarillos fault zone, which activity ended after the earliest Messinian. Fault and outcrop patterns of syntectonic Neogene sediments in the Vera basin show that displacement along the Palomares fault zone decreased at the end of the Middle Miocene although minor displacement phases may still have occurred during the Late Miocene and possibly even Pliocene. From the Middle Miocene onward, deformation in the Nijar basin was controlled by sinistral displacement along the N040E-trending Serrata strike-slip fault zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号