首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8580篇
  免费   1626篇
  国内免费   2371篇
测绘学   1243篇
大气科学   2059篇
地球物理   1842篇
地质学   3657篇
海洋学   1595篇
天文学   358篇
综合类   644篇
自然地理   1179篇
  2024年   41篇
  2023年   97篇
  2022年   284篇
  2021年   381篇
  2020年   386篇
  2019年   489篇
  2018年   404篇
  2017年   445篇
  2016年   430篇
  2015年   454篇
  2014年   572篇
  2013年   672篇
  2012年   574篇
  2011年   551篇
  2010年   511篇
  2009年   633篇
  2008年   605篇
  2007年   664篇
  2006年   595篇
  2005年   511篇
  2004年   467篇
  2003年   369篇
  2002年   359篇
  2001年   297篇
  2000年   261篇
  1999年   236篇
  1998年   204篇
  1997年   195篇
  1996年   173篇
  1995年   136篇
  1994年   105篇
  1993年   115篇
  1992年   89篇
  1991年   59篇
  1990年   57篇
  1989年   37篇
  1988年   27篇
  1987年   21篇
  1986年   17篇
  1985年   15篇
  1984年   10篇
  1983年   4篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   8篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Soil moisture is highly variable both spatially and temporally. It is widely recognized that improving the knowledge and understanding of soil moisture and the processes underpinning its spatial and temporal distribution is critical. This paper addresses the relationship between near‐surface and root zone soil moisture, the way in which they vary spatially and temporally, and the effect of sampling design for determining catchment scale soil moisture dynamics. In this study, catchment scale near‐surface (0–50 mm) and root zone (0–300 mm) soil moisture were monitored over a four‐week period. Measurements of near‐surface soil moisture were recorded at various resolutions, and near‐surface and root zone soil moisture data were also monitored continuously within a network of recording sensors. Catchment average near‐surface soil moisture derived from detailed spatial measurements and continuous observations at fixed points were found to be significantly correlated (r2 = 0·96; P = 0·0063; n = 4). Root zone soil moisture was also found to be highly correlated with catchment average near‐surface, continuously monitored (r2 = 0·81; P < 0·0001; n = 26) and with detailed spatial measurements of near‐surface soil moisture (r2 = 0·84). The weaker relationship observed between near‐surface and root zone soil moisture is considered to be caused by the different responses to rainfall and the different factors controlling soil moisture for the soil depths of 0–50 mm and 0–300 mm. Aspect is considered to be the main factor influencing the spatial and temporal distribution of near‐surface soil moisture, while topography and soil type are considered important for root zone soil moisture. The ability of a limited number of monitoring stations to provide accurate estimates of catchment scale average soil moisture for both near‐surface and root zone is thus demonstrated, as opposed to high resolution spatial measurements. Similarly, the use of near‐surface soil moisture measurements to obtain a reliable estimate of deeper soil moisture levels at the small catchment scale was demonstrated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
992.
With the objective of improving flood predictions, in recent years sophisticated continuous hydrologic models that include complex land‐surface sub‐models have been developed. This has produced a significant increase in parameterization; consequently, applications of distributed models to ungauged basins lacking specific data from field campaigns may become redundant. The objective of this paper is to produce a parsimonious and robust distributed hydrologic model for flood predictions in Italian alpine basins. Application is made to the Toce basin (area 1534 km2). The Toce basin was a case study of the RAPHAEL European Union research project, during which a comprehensive set of hydrologic, meteorological and physiographic data were collected, including the hydrologic analysis of the 1996–1997 period. Two major floods occurred during this period. We compare the FEST04 event model (which computes rainfall abstraction and antecedent soil moisture conditions through the simple Soil Conservation Service curve number method) and two continuous hydrologic models, SDM and TDM (which differ in soil water balance scheme, and base flow and runoff generation computations). The simple FEST04 event model demonstrated good performance in the prediction of the 1997 flood, but shows limits in the prediction of the long and moderate 1996 flood. More robust predictions are obtained with the parsimonious SDM continuous hydrologic model, which uses a simple one‐layer soil water balance model and an infiltration excess mechanism for runoff generation, and demonstrates good performance in both long‐term runoff modelling and flood predictions. Instead, the use of a more sophisticated continuous hydrologic model, the TDM, that simulates soil moisture dynamics in two layers of soil, and computes runoff and base flow using some TOPMODEL concepts, does not seem to be advantageous for this alpine basin. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
993.
Mark A. Bishop 《Icarus》2007,191(1):151-157
The geographic signature of dune distribution and self-organization as measured by the R-statistic offers a viewpoint on the geography of crescentic eolian systems and proposes an index from which to determine the degree of self-organization across a variety of spatial scales. Fields of simple dunes (dome, barchan, barchan-seif) are comparatively less regular in distribution than are those fields, or part thereof, that consist of compound (barchanoid) morphologies whose patterns are more highly regular.  相似文献   
994.
The atmosphere of Mars does little to attenuate incoming ultraviolet (UV) radiation. Large amounts of UV radiation sterilize the hardiest of terrestrial organisms within minutes, and chemically alter the soil such that organic molecules at or near the surface are rapidly destroyed. Thus the survival of any putative martian life near the surface depends to a large extent on how much UV radiation it receives. Variations in small-scale geometry of the surface such as pits, trenches, flat faces and overhangs can have a significant effect on the incident UV flux and may create “safe havens” for organisms and organic molecules. In order to examine this effect, a 1-D radiative transfer sky model with 836 meshed points (plus the Sun) was developed which includes both diffuse and direct components of the surface irradiance. This model derives the variation of UV flux with latitude and an object's Geometric Shielding Ratio (a ratio which describes the geometry of each situation). The best protection is offered by overhangs with flux reduced to a factor of 1.8±0.2×10−5 of the unprotected value, a reduction which does not vary significantly by latitude. Pits and cracks are less effective with a reduction in UV flux of only up to 4.5±0.5×10−3 for the modeled scenarios; however, they are more effective for the same geometric shielding ratio than overhangs at high latitudes due to the low height of the Sun in the sky. Lastly, polar faces of rocks have the least effective shielding geometry with at most a 1.1±0.1×10−1 reduction in UV flux. Polar faces of rocks are most effective at mid latitudes where the Sun is never directly overhead, as at tropical latitudes, and never exposes the back of the rock, as at polar latitudes. In the most favorable cases, UV flux is sufficiently reduced such that organic in-fall could accumulate beneath overhanging surfaces and in pits and cracks. As well, hardy terrestrial microorganisms such as Bacillus pumilus could persist for up to 100 sols on the outer surfaces of typical spacecraft or several tens of martian years in the most shielded surface niches.  相似文献   
995.
Caleb I. Fassett 《Icarus》2007,189(1):118-135
Ceraunius Tholus, a Hesperian-aged volcano in the Tharsis region, is characterized by small radial valleys on its flanks, and several larger valleys originating near its summit caldera. All of these large valleys drain from near the lowest present portion of the caldera rim and down the flanks of the volcano. The largest valley debauches into Rahe Crater (an oblique impact crater), forming a depositional fan. Recent study of climate change on Mars suggests that many low-latitude regions (especially large volcanic edifices) were periodically the sites of snow accumulation, likely triggered by variations in spin orbital parameters. We apply a conductive heat flow model to Ceraunius Tholus that suggests that following magmatic intrusion, sufficient heating would be available to cause basal melting of any accumulated summit snowpack and produce sufficient meltwater to cause the radial valleys. The geometry of the volcano summit caldera suggests that meltwater would also accumulate in a volumetrically significant caldera lake. Analysis of the morphology and volumes of the largest valley, as well as depositional features at its base, suggest that fluvial erosion due to drainage of this summit caldera lake formed the large valleys, in a manner analogous to how valleys were formed catastrophically from a lake in Aniakchak caldera in Alaska. Moreover, the event which carved the largest valley on Ceraunius Tholus appears to have led to the formation of a temporary lake within Rahe Crater, at its base. The more abundant, small valleys on the flanks are interpreted to form by radial drainage of melted ice or snow from the outside of the caldera rim. Comparison of Ceraunius Tholus with the volcano-capping Icelandic ice sheet Myrdalsjokull provides insight into the detailed mechanisms of summit heating, ice-cap accumulation and melting, and meltwater drainage. These observations further underline the importance of a combination of circumstances (i.e., climate change to produce summit snowpack and an active period of magmatism to produce melting) to form the valley systems on some martian volcanoes and not on others.  相似文献   
996.
The southwestern Adirondack region of New York receives among the highest rates of atmospheric nitrogen (N) deposition in the USA. Atmospheric N deposition to sensitive ecosystems, like the Adirondacks, may increase the acidification of soils through losses of exchangeable nutrient cations, and the acidification of surface waters associated with enhanced mobility of nitrate (NO3?). However, watershed attributes, including surficial terrestrial characteristics, in‐lake processing, and geological settings, have been found to complicate the relationships between atmospheric N deposition and N drainage losses. We studied two lake‐watersheds in the southwestern Adirondacks, Grass Pond and Constable Pond, which are located in close proximity (~26 km) and receive similarly high N deposition, but have contrasting watershed attributes (e.g. wetland area, geological settings). Since the difference in the influence of N deposition was minimal, we were able to examine both within‐ and between‐watershed influences of land cover, the contribution of glacial till groundwater inputs, and in‐lake processes on surface water chemistry with particular emphasis on N solutes and dissolved organic carbon (DOC). Monthly samples at seven inlets and one outlet of each lake were collected from May to October in 1999 and 2000. The concentrations of NO3? were high at the Grass Pond inlets, especially at two inlets, and NO3? was the major N solute at the Grass Pond inlets. The concentrations of likely weathering products (i.e. dissolved Si, Ca2+, Mg2+, Na+) as well as acid neutralizing capacity and pH values, were also particularly high at those two Grass Pond inlets, suggesting a large contribution of groundwater inputs. Dissolved organic N (DON) was the major N solute at the Constable Pond inlets. The higher concentrations of DON and DOC at the Constable Pond inlets were attributed to a large wetland area in the watershed. The DOC/DON ratios were also higher at the Constable Pond inlets, possibly due to a larger proportion of coniferous forest area. Although DON and DOC were strongly related, the stronger relationship of the proportion of wetland area with DOC suggests that additional factors regulate DON. The aggregated representation of watershed physical features (i.e. elevation, watershed area, mean topographic index, hypsometric‐analysis index) was not clearly related to the lake N and DOC chemistry. Despite distinctive differences in inlet N chemistry, NO3? and DON concentrations at the outlets of the two lakes were similar. The lower DOC/DON ratios at the lake outlets and at the inlets having upstream ponds suggest the importance of N processing and organic N sources within the lakes. Although an inverse relationship between NO3? and DOC/DON has been suggested to be indicative of a N deposition gradient, the existence of this relationship for sites that receive similar atmospheric N deposition suggest that the relationship between NO3? and the DOC/DON ratio is derived from environmental and physical factors. Our results suggest that, despite similar wet N deposition at the two watershed sites, N solutes entering lakes were strongly affected by hydrology associated with groundwater contribution and the presence of wetlands, whereas N solutes leaving lakes were strongly influenced by in‐lake processing. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
997.
Root zone soil water content impacts plant water availability, land energy and water balances. Because of unknown hydrological model error, observation errors and the statistical characteristics of the errors, the widely used Kalman filter (KF) and its extensions are challenged to retrieve the root zone soil water content using the surface soil water content. If the soil hydraulic parameters are poorly estimated, the KF and its extensions fail to accurately estimate the root zone soil water. The H‐infinity filter (HF) represents a robust version of the KF. The HF is widely used in data assimilation and is superior to the KF, especially when the performance of the model is not well understood. The objective of this study is to study the impact of uncertain soil hydraulic parameters, initial soil moisture content and observation period on the ability of HF assimilation to predict in situ soil water content. In this article, we study seven cases. The results show that the soil hydraulic parameters hold a critical role in the course of assimilation. When the soil hydraulic parameters are poorly estimated, an accurate estimation of root soil water content cannot be retrieved by the HF assimilation approach. When the estimated soil hydraulic parameters are similar to actual values, the soil water content at various depths can be accurately retrieved by the HF assimilation. The HF assimilation is not very sensitive to the initial soil water content, and the impact of the initial soil water content on the assimilation scheme can be eliminated after about 5–7 days. The observation interval is important for soil water profile distribution retrieval with the HF, and the shorter the observation interval, the shorter the time required to achieve actual soil water content. However, the retrieval results are not very accurate at a depth of 100 cm. Also it is complex to determine the weighting coefficient and the error attenuation parameter in the HF assimilation. In this article, the trial‐and‐error method was used to determine the weighting coefficient and the error attenuation parameter. After the first establishment of limited range of the parameters, ‘the best parameter set’ was selected from the range of values. For the soil conditions investigated, the HF assimilation results are better than the open‐loop results. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
998.
In climate models, the land–atmosphere interactions are described numerically by land surface parameterization (LSP) schemes. The continuing improvement in realism in these schemes comes at the expense of the need to specify a large number of parameters that are either directly measured or estimated. Also, an emerging problem is whether the relationships used in LSPs are universal and globally applicable. One plausible approach to evaluate this is to first minimize uncertainty in model parameters by calibration. In this paper, we conduct a comprehensive analysis of some model diagnostics using a slightly modified version of the Simple Biosphere 3 model for a variety of biomes located mainly in the Amazon. First, the degree of influence of each individual parameter in simulating surface fluxes is identified. Next, we estimate parameters using a multi‐operator genetic algorithm applied in a multi‐objective context and evaluate simulations of energy and carbon fluxes against observations. Compared with the default parameter sets, these parameter estimates improve the partitioning of energy fluxes in forest and cropland sites and provide better simulations of daytime increases in assimilation of net carbon during the dry season at forest sites. Finally, a detailed assessment of the parameter estimation problem was performed by accounting for the decomposition of the mean squared error to the total model uncertainty. Analysis of the total prediction uncertainty reveals that the parameter adjustments significantly improve reproduction of the mean and variability of the flux time series at all sites and generally remove seasonality of the errors but do not improve dynamical properties. Our results demonstrate that error decomposition provides a meaningful and intuitive way to understand differences in model performance. To make further advancements in the knowledge of these models, we encourage the LSP community to adopt similar approaches in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
999.
Digital elevation models (DEMs) at different resolutions (180, 360, and 720 m) are used to examine the impact of different levels of landscape representation on the hydrological response of a 690‐km2 catchment in southern Quebec. Frequency distributions of local slope, plan curvature, and drainage area are calculated for each grid size resolution. This landscape analysis reveals that DEM grid size significantly affects computed topographic attributes, which in turn explains some of the differences in the hydrological simulations. The simulations that are then carried out, using a coupled, process‐based model of surface and subsurface flow, examine the effects of grid size on both the integrated response of the catchment (discharge at the main outlet and at two internal points) and the distributed response (water table depth, surface saturation, and soil water storage). The results indicate that discharge volumes increase as the DEM is coarsened, and that coarser DEMs are also wetter overall in terms of water table depth and soil water storage. The reasons for these trends include an increase in the total drainage area of the catchment for larger DEM cell sizes, due to aggregation effects at the boundary cells of the catchment, and to a decrease in local slope and plan curvature variations, which in turn limits the capacity of the watershed to transmit water downslope and laterally. The results obtained also show that grid resolution effects are less pronounced during dry periods when soil moisture dynamics are mostly controlled by vertical fluxes of evaporation and percolation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
1000.
The North China Plain, which is critical for food production in China, is encountering serious water shortage due to heavy agricultural water requirement. The accurate modelling of carbon dioxide flux and evapotranspiration (ET) in croplands is thus essential for yield prediction and water resources management. The land surface model is powerful in simulating energy and carbon dioxide fluxes between land and atmosphere. Some key processes in the Simple Biosphere Model (Version 2, SiB2) were parameterized based on the observations. The simulated fluxes were tested against the eddy covariance flux measurements over two typical winter wheat/maize double cropping fields. A simple diagnostic parameterisation of soil respiration, not included in SiB2, was added and calibrated using the observations to model the carbon budget. The Ball‐Berry stomatal conductance model was calibrated using observed leaf gas exchange rate, showing that the original SiB2 could significantly underpredict the ET in the wheat field. SiB2 significantly underpredicted soil resistance at the Weishan site, leading to overpredict the ET. Overall, there was a close agreement between the simulated and observed latent heat fluxes and net CO2 exchange using the re‐parameterized SiB2. These findings are important when the model is used for the regional simulation in the North China Plain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号