首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   7篇
  国内免费   1篇
地球物理   13篇
地质学   7篇
天文学   1篇
自然地理   6篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   5篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2001年   2篇
  1999年   2篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有27条查询结果,搜索用时 906 毫秒
1.
Water levels in cryoconite holes were monitored at high resolution over a 3‐week period on Austre Brøggerbreen (Svalbard). These data were combined with melt and energy balance modelling, providing insights into the evolution of the glacier's near‐surface hydrology and confirming that the hydrology of the near‐surface, porous ice known as the ‘weathering crust’ is dynamic and analogous to a shallow‐perched aquifer. A positive correlation between radiative forcing of melt and drainage efficiency was found within the weathering crust. This likely resulted from diurnal contraction and dilation of interstitial pore spaces driven by variations in radiative and turbulent fluxes in the surface energy balance, occasionally causing ‘sudden drainage events’. A linear decrease in water levels in cryoconite holes was also observed and attributed to cumulative increases in near‐surface ice porosity over the measurement period. The transport of particulate matter and microbes between cryoconite holes through the porous weathering crust is shown to be dependent upon weathering crust hydraulics and particle size. Cryoconite holes therefore yield an indication of the hydrological dynamics of the weathering crust and provide long‐term storage loci for cryoconite at the glacier surface. This study highlights the importance of the weathering crust as a crucial component of the hydrology, ecology and biogeochemistry of the glacier ecosystem and glacierized regions and demonstrates the utility of cryoconite holes as natural piezometers on glacier surfaces. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
2.
Surface melt has great impacts on the Greenland Ice Sheet (GrlS) mass balance and thereby has become the focus of significant GrlS research in recent years. The production, transport, and release processes of surface meltwater are the keys to understanding the poten- tial impacts of the GrlS surface melt. These hydrological processes can elucidate the following scientific questions: How much melt- water is produced atop the GrlS? What are the characteristics of the meltwater-formed supraglacial hydrological system? How does the meltwater influence the GrlS motion? The GrlS supraglacial hydrology has a number of key roles and yet continues to be poorly understood or documented. This paper summarizes the current understanding of the GrlS surface melt, emphasizing the three essential supraglacial hydrological processes: (1) meltwater production: surface melt modeling is an important approach to acquire surface melt information, and areas, depths, and volumes of supraglacial lakes extracted from remotely sensed imagery can also provide surface melt information; (2) meltwater transport: the spatial distributions of supraglacial lakes, supraglacial sarams, moulins, and crevasses demonstrate the characteristics of the supraglacial hydrological system, revealing the meltwater transport process; and (3) meltwater release: the release of meltwater into the englacial and the subglacial ice sheet has important but undetermined impacts on the GrlS motion. The correlation between surface runoff and the GrlS motion speed is employed to understand these influences.  相似文献   
3.
The hydrology of near‐surface glacier ice remains a neglected aspect of glacier hydrology despite its role in modulating meltwater delivery to downstream environments. To elucidate the hydrological characteristics of this near‐surface glacial weathering crust, we describe the design and operation of a capacitance‐based piezometer that enables rapid, economical deployment across multiple sites and provides an accurate, high‐resolution record of near‐surface water‐level fluctuations. Piezometers were employed at 10 northern hemisphere glaciers, and through the application of standard bail–recharge techniques, we derive hydraulic conductivity (K) values from 0.003 to 3.519 m day?1, with a mean of 0.185 ± 0.019 m day?1. These results are comparable to those obtained in other discrete studies of glacier near‐surface ice, and for firn, and indicate that the weathering crust represents a hydrologically inefficient aquifer. Hydraulic conductivity correlated positively with water table height but negatively with altitude and cumulative short‐wave radiation since the last synoptic period of either negative air temperatures or turbulent energy flux dominance. The large range of K observed suggests complex interactions between meteorological influences and differences arising from variability in ice structure and crystallography. Our data demonstrate a greater complexity of near‐surface ice hydrology than hitherto appreciated and support the notion that the weathering crust can regulate the supraglacial discharge response to melt production. The conductivities reported here, coupled with typical supraglacial channel spacing, suggest that meltwater can be retained within the weathering crust for at least several days. Not only does this have implications for the accuracy of predictive meltwater run‐off models, but we also argue for biogeochemical processes and transfers that are strongly conditioned by water residence time and the efficacy of the cascade of sediments, impurities, microbes, and nutrients to downstream ecosystems. Because continued atmospheric warming will incur rising snowline elevations and glacier thinning, the supraglacial hydrological system may assume greater importance in many mountainous regions, and consequently, detailing weathering crust hydraulics represents a research priority because the flow path it represents remains poorly constrained.  相似文献   
4.
Many glaciers in alpine regions are currently rapidly receding and thinning at historically unobserved rates causing changes in the velocity field and in normal and shear stresses affecting the surface expression of structures within the ice. We studied the distribution of brittle and ductile structures at the surface of Pasterze Glacier during a 14-year period by analysing orthophotos and digital elevation models of five stages (1998, 2003, 2006, 2009 and 2012). A structural glaciological mapping key was applied. Normal faults, strike-slip faults, en échelon structures (systematic stepping of fractures), thrust faults, and band ogives were distinguished. Results indicate substantial deceleration and glacier thinning in 1998–2012. Glacier thinning was not homogenous over time related to the uneven distribution of supraglacial debris causing differential ablation or the selective ablation effects of subglacial water channels. Peculiar supraglacial features observed are circular collapse structures with concentric crevasses which form when the ice between the surface and the roof of water channels decreases. The total length of brittle structures increased from 38.4 km to 56.9 km whereas the extent of the glacier tongue decreased by 25%. The fracture density doubled from 0.009 to 0.018 m/m2. Areas of the glacier tongue which were up to 100 m away from the nearest brittle structure increased by 16%. The visual appearance of thrust faults shifted upglacier due to decreasing glacier velocity causing horizontal shortening or due to exhumation of faults that did not previously extend to the surface. A large number of brittle structures are progressively independent from glacier motion. Our study suggests that glacier tongues which are in a state of rapid decay and thinning are prone to fracturing due to normal fault formation and glacier disintegration. Water further increases ablation rates substantially if rather large amounts drain through supra-, en- or subglacial water channels. © 2018 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   
5.
Rockwall slope erosion is defined for the upper Bhagirathi catchment using cosmogenic Beryllium-10 (10Be) concentrations in sediment from medial moraines on Gangotri glacier. Beryllium-10 concentrations range from 1.1 ± 0.2 to 2.7 ± 0.3 × 104 at/g SiO2, yielding rockwall slope erosion rates from 2.4 ± 0.4 to 6.9 ± 1.9 mm/a. Slope erosion rates are likely to have varied over space and time and responded to shifts in climate, geomorphic and/or tectonic regime throughout the late Quaternary. Geomorphic and sedimentological analyses confirm that the moraines are predominately composed of rockfall and avalanche debris mobilized from steep relief rockwall slopes via periglacial weathering processes. The glacial rockwall slope erosion affects sediment flux and storage of snow and ice at the catchment head on diurnal to millennial timescales, and more broadly influences catchment configuration and relief, glacier dynamics and microclimates. The slope erosion rates exceed the averaged catchment-wide and exhumation rates of Bhagirathi and the Garhwal region on geomorphic timescales (103−105 years), supporting the view that erosion at the headwaters can outpace the wider catchment. The 10Be concentrations of medial moraine sediment for the upper Bhagirathi catchment and the catchments of Chhota Shigri in Lahul, northern India and Baltoro glacier in Central Karakoram, Pakistan show a tentative relationship between 10Be concentration and precipitation. As such there is more rapid glacial rockwall slope erosion in the monsoon-influenced Lesser and Greater Himalaya compared to the semi-arid interior of the orogen. Rockwall slope erosion in the three study areas, and more broadly across the northwest Himalaya is likely governed by individual catchment dynamics that vary across space and time. © 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons, Ltd.  相似文献   
6.
Supraglacial channels are an important mechanism for surface water transport over the ablation zone of western Greenland. The first assessment of the spatio‐temporal distribution of surface melt channels and their relationship to supraglacial lakes over the Jakobshavn Isbræ region of Western Greenland was analysed using Landsat Enhanced Thematic Mapper Plus panchromatic images during the 2007 melt season. A total of 1188 melt channels were delineated and show an increase in the number of melt channels throughout the season, reaching a peak on 9 August. Water‐filled melt channels advanced to a maximum elevation of 1647 m on 9 August and attained a minimum average slope of 0.009 on 8 July. The ablation zone demonstrates two hydrologic modes, where crevasse and moulin terminating channels dominate at elevations <800 m and higher‐order channel networks >800 m. Development of higher‐order networks is interrupted by flow divergence due to partitioning of melt water into vertical infiltration through moulins and crevasse fields prevalent at lower elevations. Tributary and connector networks between 800 and 1200 m in elevation are correlated with fewer lake occurrences, lower surface velocities (~50 m a?1), and ice flow dominated by internal deformation over basal sliding. High‐order channels are associated with lake basins that exceed melt water storage capacity. Evolution of channel networks is coupled to changes in melt water production, runoff, and ice dynamics with implication for the englacial and subglacial environments. © 2013 The Authors. Hydrological Processes Published by John Wiley & Sons, Ltd.  相似文献   
7.
As debris‐covered glaciers become a more prominent feature of a shrinking mountain cryosphere, there is increasing need to successfully model the surface energy and mass balance of debris‐covered glaciers, yet measurements of the processes operating in natural supraglacial debris covers are sparse. We report measurements of vertical temperature profiles in debris on the Ngozumpa glacier in Nepal, that show: (i) conductive processes dominate during the ablation season in matrix‐supported diamict; (ii) ventilation may be possible in coarse surface layers; (iii) phase changes associated with seasonal change have a marked effect on the effective thermal diffusivity of the debris. Effective thermal conductivity determined from vertical temperature profiles in the debris is generally ~30% higher in summer than in winter, but values depend on the volume and phase of water in the debris. Surface albedo can vary widely over small spatial scales, as does the debris thickness. Measurements indicate that debris thickness is best represented as a probability density function with the peak debris thickness increasing down‐glacier. The findings from Ngozumpa glacier indicate that the probability distribution of debris thickness changes from positively skewed in the upper glacier towards a more normal distribution nearer the terminus. Although many of these effects remain to be quantified, our observations highlight aspects of spatial and temporal variability in supraglacial debris that may require consideration in annual or multi‐annual distributed modelling of debris‐covered glacier surface energy and mass balance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
8.
A one‐dimensional energy and mass balance snow model (SNTHERM) has been modified for use with supraglacial snowpacks and applied to a point on Haut Glacier d'Arolla, Switzerland. It has been adapted to incorporate the underlying glacier ice and a site‐specific, empirically derived albedo routine. Model performance was tested against continuous measurements of snow depth and meltwater outflow from the base of the snowpack, and intermittent measurements of surface albedo and snowpack density profiles collected during the 1993 and 2000 melt seasons. Snow and ice ablation was simulated accurately. The timing of the daily pattern of meltwater outflow was well reproduced, although magnitudes were generally underestimated, possibly indicating preferential flow into the snowpack lysimeter. The model was used to assess the quantity of meltwater stored temporally within the unsaturated snowpack and meltwater percolation rates, which were found to be in agreement with dye tracer experiments undertaken on this glacier. As with other energy balance studies on alpine valley glaciers, the energy available for melt was dominated by net radiation (64%), with a sizable contribution from sensible heat flux (36%) and with a negligible latent heat flux overall, although there was more complex temporal variation on diurnal timescales. A basic sensitivity analysis indicated that melt rates were most sensitive to radiation, air temperature and snowpack density, indicating the need to accurately extrapolate/interpolate these variables when developing a spatially distributed framework for this model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
9.
基于2007年7~9月对科其喀尔冰川消融区冰面湖、表碛、裸冰的温度和消融观测,分析三者的温度变化特征及其差异,探讨冰面湖的热机制.结果表明:科其喀尔冰川冰面湖表层水温受瞬时天气状况影响明显,变化趋势与气温一致,但不如气温变化剧烈并有1~3h滞后性;由于白天冰川融水注入与表层暖水混合下沉,深层湖水在一天的14~16时左右...  相似文献   
10.
格陵兰冰盖表面消融研究进展   总被引:3,自引:1,他引:2  
杨康 《冰川冻土》2013,35(1):101-109
冰盖表面消融是格陵兰冰盖物质平衡的重要组成部分, 已成为近年来格陵兰冰盖研究的热点. 格陵兰冰盖表面消融研究的关键在于理解冰盖融水的产生、 运移和释放等水文过程, 需要解决如下关键科学问题: 1) 冰盖表面产生了多少融水;2)冰盖表面水文系统具有什么特征; 3)冰盖表面融水如何影响冰盖运动; 围绕这些科学问题, 总结了格陵兰冰盖表面消融的研究进展. 冰盖表面消融建模、 冰盖表面湖的信息提取与面积特征变化、 深度反演与体积量算等是目前研究冰盖表面融水量的主要途径, 冰盖表面湖、 冰盖表面径流、 锅穴与冰裂隙等表面水文要素的空间分布规律研究则可用于揭示冰盖表面水文系统特征, 冰盖表面融水与冰盖运动速率的关系、 表面融水进入冰盖内部与底部的水文过程是目前揭示表面融水如何影响冰盖运动的主要手段.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号