首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6845篇
  免费   1495篇
  国内免费   2242篇
测绘学   90篇
大气科学   324篇
地球物理   1188篇
地质学   7572篇
海洋学   419篇
天文学   11篇
综合类   311篇
自然地理   667篇
  2024年   42篇
  2023年   99篇
  2022年   186篇
  2021年   260篇
  2020年   274篇
  2019年   297篇
  2018年   258篇
  2017年   308篇
  2016年   340篇
  2015年   311篇
  2014年   403篇
  2013年   519篇
  2012年   479篇
  2011年   531篇
  2010年   405篇
  2009年   516篇
  2008年   501篇
  2007年   517篇
  2006年   571篇
  2005年   431篇
  2004年   434篇
  2003年   382篇
  2002年   367篇
  2001年   324篇
  2000年   360篇
  1999年   281篇
  1998年   206篇
  1997年   223篇
  1996年   186篇
  1995年   156篇
  1994年   113篇
  1993年   76篇
  1992年   65篇
  1991年   39篇
  1990年   32篇
  1989年   24篇
  1988年   26篇
  1987年   16篇
  1986年   9篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 734 毫秒
381.
任以胜  陆林  虞虎  朱道才 《地理学报》2020,75(8):1667-1679
流域生态补偿是中国跨区域生态治理和自然区域保护的一项重要经济、社会、环境政策,涉及区域利益主体权益差异与协调、区域生态协同发展和合作模式构建等方面,是一个典型的地理学研究命题。本文将制度粘性引入到尺度政治理论中,剖析新安江流域生态补偿政府主体的博弈行为,探究不同政府主体的博弈特征和博弈机制。结果表明:中央政府、省级政府、市级政府等不同层级政府主体经历了竞争博弈、合作博弈和竞合博弈3个阶段,构建政府利益共同体能够推进流域生态补偿建设,中央政府的“适度介入”是开展跨省流域生态补偿的关键;流域生态补偿制度从“垂直”模式向“垂直—水平”模式的变迁过程中存在明显的制度粘性,政府主体利用政策革新和社会参与等制度约束稀释制度粘性,重塑流域生态补偿制度;尺度转换是推动新安江流域生态补偿的核心机制,政府主体通过重新分配权力和资本、嵌入非正式约束塑造流域生态补偿话语体系,推动新安江流域生态补偿由“强国家—弱社会”向“强国家—强社会”结构模式的转变。研究结果能够为构建跨区域流域生态补偿机制提供理论支撑,为合理评价和指导流域生态补偿实践、促进流域经济社会协调可持续发展提供科学依据。  相似文献   
382.
Most source-to-sink studies typically focus on the dynamics of clastic sediments and consider erosion, transport and deposition of sediment particles as the sole contributors. Although often neglected, dissolved solids produced by weathering processes contribute significantly in the sedimentary dynamics of basins, supporting chemical and/or biological precipitation. Calcium ions are usually a major dissolved constituent of water drained through the watershed and may facilitate the precipitation of calcium carbonate when supersaturating conditions are reached. The high mobility of Ca2+ ions may cause outflow from an open system and consequently loss. In contrast, in closed basins, all dissolved (i.e. non-volatile) inputs converge at the lowest point of the basin. The endoreic Great Salt Lake basin constitutes an excellent natural laboratory to study the dynamics of calcium on a basin scale, from the erosion and transport through the watershed to the sink, including sedimentation in lake's waterbody. The current investigation focused on the Holocene epoch. Despite successive lake level fluctuations (amplitude around 10 m), the average water level seems to have not been affected by any significant long-term change (i.e. no increasing or decreasing trend, but fairly stable across the Holocene). Weathering of calcium-rich minerals in the watershed mobilizes Ca2+ ions that are transported by surface streams and subsurface flow to the Great Salt Lake (GSL). Monitoring data of these flows was corrected for recent anthropogenic activity (river management) and combined with direct precipitation (i.e. rain and snow) and atmospheric dust income into the lake, allowing estimating the amount of calcium delivered to the GSL. These values were then extrapolated through the Holocene period and compared to the estimated amount of calcium stored in GSL water column, porewater and sediments (using hydrochemical, mapping, coring and petrophysical estimates). The similar estimate of calcium delivered (4.88 Gt) and calcium stored (3.94 Gt) is consistent with the premise of the source-to-sink approach: a mass balance between eroded and transported compounds and the sinks. The amount of calcium deposited in the basin can therefore be predicted indirectly from the different inputs, which can be assessed with more confidence. When monitoring is unavailable (e.g. in the fossil record), the geodynamic context, the average lithology of the watershed and the bioclimatic classification of an endoreic basin are alternative properties that may be used to estimate the inputs. We show that this approach is sufficiently accurate to predict the amount of calcium captured in a basin and can be extended to the whole fossil record and inform on the storage of calcium.  相似文献   
383.
The Ulleung Basin, East Sea/Japan Sea, is a Neogene back-arc basin and occupies a tectonically crucial zone under the influence of relative motions between Eurasian, Pacific and Philippine Sea plates. However, the link between tectonics and sedimentation remains poorly understood in the back-arc Ulleung Basin, as it does in many other back-arc basins as well, because of a paucity of seismic data and controversy over the tectonic history of the basin. This paper presents an integrated tectonostratigraphic and sedimentary evolution in the deepwater Ulleung Basin using 2D multichannel seismic reflection data. The sedimentary succession within the deepwater Ulleung Basin is divided into four second-order seismic megasequences (MS1 to MS4). Detailed seismic stratigraphy interpretation of the four megasequences suggests the depositional history of the deepwater Ulleung Basin occurred in four stages, controlled by tectonic movement, volcanism, and sea-level fluctuations. In Stage 1 (late Oligocene through early Miocene), syn-rift sediment supplied to the basin was restricted to the southern base-of-slope, whereas the northern distal part of the basin was dominated by volcanic sills and lava flows derived from initial rifting-related volcanism. In Stage 2 (late early Miocene through middle Miocene), volcanic extrusion occurred through post-rift, chain volcanism in the earliest time, followed by hemipelagic and turbidite sedimentation in a quiescent open marine setting. In Stage 3 (late middle Miocene through late Miocene), compressional activity was predominant throughout the Ulleung Basin, resulting in regional uplift and sub-aerial erosion/denudation of the southern shelf of the basin, which provided enormous volumes of sediment into the basin through mass transport processes. In Stage 4 (early Pliocene through present), although the degree of tectonic stress decreased significantly, mass movement was still generated by sea-level fluctuations as well as compressional tectonic movement, resulting in stacked mass transport deposits along the southern basin margin. We propose a new depositional history model for the deepwater Ulleung Basin and provide a window into understanding how tectonic, volcanic and eustatic interactions control sedimentation in back-arc basins.  相似文献   
384.
In the northwestern sector of the Zagros foreland basin, axial fluvial systems initially delivered fine-grained sediments from northwestern source regions into a contiguous basin, and later transverse fluvial systems delivered coarse-grained sediments from northeastern sources into a structurally partitioned basin by fold-thrust deformation. Here we integrate sedimentologic, stratigraphic, palaeomagnetic and geochronologic data from the northwestern Zagros foreland basin to define the Neogene history of deposition and sediment routing in response to progressive advance of the Zagros fold-thrust belt. This study constrains the depositional environments, timing of deposition and provenance of nonmarine clastic deposits of the Injana (Upper Fars), Mukdadiya (Lower Bakhtiari) and Bai-Hasan (Upper Bakhtiari) Formations in the Kurdistan region of Iraq. Sediments of the Injana Formation (~12.4–7.75 Ma) were transported axially (orogen-parallel) from northwest to southeast by meandering and low-sinuosity channel belt system. In contrast, during deposition of the Mukdadiya Formation (~7.75–5 Ma), sediments were delivered transversely (orogen-perpendicular) from northeast to southwest by braided and low-sinuosity channel belt system in distributive fluvial megafans. By ~5 Ma, the northwestern Zagros foreland basin became partitioned by growth of the Mountain Front Flexure and considerable gravel was introduced in localized alluvial fans derived from growing topographic highs. Foredeep accumulation rates during deposition of the Injana, Mukdadiya and Bai-Hasan Formations averaged 350, 400 and 600 m/Myr respectively, suggesting accelerated accommodation generation in a rapidly subsiding basin governed by flexural subsidence. Detrital zircon U-Pb age spectra show that in addition to sources of Mesozoic-Cenozoic cover strata, the Injana Formation was derived chiefly from Palaeozoic-Precambrian (including Carboniferous and latest Neoproterozoic) strata in an axial position to the northwest, likely from the Bitlis-Puturge Massif and broader Eastern Anatolia. In contrast, the Mukdadiya and Bai-Hasan Formations yield distinctive Palaeogene U-Pb age peaks, particularly in the southeastern sector of the study region, consistent with transverse delivery from the arc-related terranes of the Walash and Naopurdan volcano-sedimentary groups (Gaveh-Rud domain?) and Urumieh-Dokhtar magmatic arc to the northeast. These temporal and spatial variations in stratigraphic framework, depositional environments, sediment routing and compositional provenance reveal a major drainage reorganization during Neogene shortening in the Zagros fold-thrust belt. Whereas axial fluvial systems initially dominated the foreland basin during early orogenesis in the Kurdistan region of Iraq, transverse fluvial systems were subsequently established and delivered major sediment volumes to the foreland as a consequence of the abrupt deformation advance and associated topographic growth in the Zagros.  相似文献   
385.
Basin models can simulate geological, geochemical and geophysical processes and potentially also the deep biosphere, starting from a burial curve, assuming a thermal history and utilizing other experimentally obtained data. Here, we apply basin modelling techniques to model cell abundances within the deep coalbed biosphere off Shimokita Peninsula, Japan, drilled during Integrated Ocean Drilling Program Expedition 337. Two approaches were used to simulate the deep coalbed biosphere: (a) In the first approach, the deep biosphere was modelled using a material balance approach that treats the deep biosphere as a carbon reservoir, in which fluxes are governed by temperature-controlled metabolic processes that retain carbon via cell-growth and cell-repair and pass it back via cell-damaging reactions. (b) In the second approach, the deep biosphere was modelled as a microbial community with a temperature-controlled growth ratio and carrying capacity (a limit on the size of the deep biosphere) modulated by diagenetic-processes. In all cases, the biosphere in the coalbeds and adjacent habitat are best modelled as a carbon-limited community undergoing starvation because labile sedimentary organic matter is no longer present and petroleum generation is yet to occur. This state of starvation was represented by the conversion of organic carbon to authigenic carbonate and the formation of kerogen. The potential for the biosphere to be stimulated by the generation of carbon-dioxide from the coal during its transition from brown to sub-bituminous coal was evaluated and a net thickness of 20 m of lignite was found sufficient to support an order of magnitude greater number of cells within a low-total organic carbon (TOC) horizon. By comparison, the stimulation of microbial populations in a coalbed or high-TOC horizon would be harder to detect because the increase in population size would be proportionally very small.  相似文献   
386.
Dawsonite, NaAlCO3(OH)2, is widespread as a cement, replacement and cavity filling in Hailaer Basin in China and Bowen-Gunnedah-Sydney (BGS) basin system in Australia. The origin of dawsonite is emphatically contrasted and analyzed through stable isotopic composition. Dawsonite δ13C values ranging from -4.0×10-3 to 4.1×10-3 are remarkably consistent through the BGS basin system. The calculated δ13C values of CO2 gas in isotopic equilibrium with dawsonite range from -11.3×10-3 to -4.6×10-3. These values indicate carbon of dawsonite came from inorganic CO2 gas accompanied by magmatic activity. In Hailaer Basin, the Dawsonite δ13C values ranging from -4.64×10-3 to 2.12×10-3 are also consistent. The calculated δ13C values of CO2 gas in isotopic equilibrium with dawsonite range from -11.82×10-3 to -5.11×10-3. According to the coincidence of dawsonite-bearing well and CO2 gas well with mantle source,lying along deep fracture within or adjacent to Yanshanian granite,it is concluded that CO2 gas forming dawsonite is derived from mantle related to magmatic process during the Yanshanian. A little biologic origin carbon owing to petroleum charging intervened when dawsonite formed.  相似文献   
387.
不同岩性火山岩力学性质实验研究   总被引:1,自引:0,他引:1  
黄沙坨地区位于辽河断陷盆地东部凹陷中段,古近纪沙河街组第三段沉积时期发育了巨厚的火山岩,为该区形成火山岩油气藏奠定了成藏条件。由于油层岩石的力学性质,影响着油田生产,因此,经过实验室对不同岩性的火山岩力学性质的试验测试,得到油田生产所需的相关的力学参数及相关的地质信息,为油田勘探、开发及相关的工程设计发挥重要作用。试验结果表明,粗面岩以张性破裂为主,玄武岩以剪切破裂为主。这对油田研究水力压裂裂缝形态及储层天然裂缝形态提供了重要的地质依据。软化系数的较大波动,表现出地下流体对油层岩石的环境作用。  相似文献   
388.
Lower Palaeogene extrusive igneous rocks of the Faroe Islands Basalt Group (FIBG) dominate the Faroese continental margin, with flood basalts created at the time of breakup and separation from East Greenland extending eastwards into the Faroe‐Shetland Basin. This volcanic succession was emplaced in connection with the opening of the NE Atlantic; however, consensus on the age and duration of volcanism remains lacking. On the Faroe Islands, the FIBG comprises four main basaltic formations (the pre‐breakup Lopra and Beinisvørð formations, and the syn‐breakup Malinstindur and Enni formations) locally separated by thin intrabasaltic sedimentary and/or volcaniclastic units. Offshore, the distribution of these formations remains ambiguous. We examine the stratigraphic framework of these rocks on the Faroese continental margin combining onshore (published) outcrop information with offshore seismic‐reflection and well data. Our results indicate that on seismic‐reflection profiles, the FIBG can be informally divided into lower and upper seismic‐stratigraphic packages separated by the strongly reflective A‐horizon. The Lower FIBG comprises the Lopra and Beinisvørð formations; the upper FIBG includes the Malinstindur and Enni formations. The strongly reflecting A‐horizon is a consequence of the contrast in properties of the overlying Malinstindur and underlying Beinisvørð formations. Onshore, the A‐horizon is an erosional surface, locally cutting down into the Beinisvørð Formation; offshore, we have correlated the A‐horizon with the Flett unconformity, a highly incised, subaerial unconformity, within the juxtaposed and interbedded sedimentary fill of the Faroe‐Shetland Basin. We refer to this key regional boundary as the A‐horizon/Flett unconformity. The formation of this unconformity represents the transition from the pre‐breakup to the syn‐breakup phase of ocean margin development in the Faroe–Shetland region. We examine the wider implications of this correlation considering existing stratigraphic models for the FIBG, discussing potential sources of uncertainty in the correlation of the lower Palaeogene succession across the Faroe–Shetland region, and implications for the age and duration of the volcanism.  相似文献   
389.
In this paper, a literature‐based compilation of the timing and history of salt tectonics in the Southern Permian Basin (Central Europe) is presented. The tectono‐stratigraphic evolution of the Southern Permian Basin is influenced by salt movement and the structural development of various types of salt structures. The compilation presented here was used to characterize the following syndepositional growth stages of the salt structures: (a) “phase of initiation”; (b) phase of fastest growth (“main activity”); and (c) phase of burial’. We have also mapped the spatial pattern of potential mechanisms that triggered the initiation of salt structures over the area studied and summarized them for distinct regions (sub‐basins, platforms, etc.). The data base compiled and the set of maps produced from it provide a detailed overview of the spatial and temporal distribution of salt tectonic activity enabling the correlation of tectonic phases between specific regions of the entire Southern Permian Basin. Accordingly, salt movements were initiated in deeply subsided graben structures and fault zones during the Early and Middle Triassic. In these areas, salt structures reached their phase of main activity already during the Late Triassic or the Jurassic and were mostly buried during the Early Cretaceous. Salt structures in less subsided sub‐basins and platform regions of the Southern Permian Basin mostly started to grow during the Late Triassic. The subsequent phase of main activity of these salt structures took place from the Late Cretaceous to the Cenozoic. The analysis of the trigger mechanisms revealed that most salt structures were initiated by large‐offset normal faults in the sub‐salt basement in the large graben structures and minor normal faulting associated with thin‐skinned extension in the less subsided basin parts.  相似文献   
390.
胶莱盆地东缘早白垩世早期莱阳群沉积体现了湖盆由开始形成—鼎盛—萎缩消亡的全过程,发育由冲洪积相—湖相—三角洲相—河流相沉积的完整序列,且由东至西,由湖相到河流相逐渐过渡;古水流方向显示莱阳期盆地中心位于朱吴断裂、海阳断裂带之间,以断裂带为界,以西水流方向大致为由NW至SE向,以东水流方向则为由SE至NW向;早白垩世早期莱阳期盆地的形成与演化明显受区域性牟(平)-即(墨)断裂带活动所控制。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号