首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   63篇
  国内免费   110篇
地球物理   34篇
地质学   533篇
海洋学   9篇
综合类   5篇
  2024年   7篇
  2023年   17篇
  2022年   10篇
  2021年   6篇
  2020年   17篇
  2019年   18篇
  2018年   11篇
  2017年   17篇
  2016年   14篇
  2015年   16篇
  2014年   20篇
  2013年   20篇
  2012年   24篇
  2011年   13篇
  2010年   16篇
  2009年   16篇
  2008年   19篇
  2007年   21篇
  2006年   24篇
  2005年   24篇
  2004年   29篇
  2003年   26篇
  2002年   16篇
  2001年   19篇
  2000年   24篇
  1999年   14篇
  1998年   14篇
  1997年   15篇
  1996年   11篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   11篇
  1991年   6篇
  1990年   12篇
  1989年   9篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
排序方式: 共有581条查询结果,搜索用时 15 毫秒
91.
The Triassic Dehnow pluton of NE Iran is a garnet-bearing I-type calc-alkaline metaluminous diorite-tonalite-granodiorite intrusion. The parental magma formed as the result of partial melting of intermediate to felsic rocks in the lower crust. Petrological and geochemical evidence, which indicates a magmatic origin for the garnet, includes: large size (~10–20 mm) of crystals, absence of reaction rims, a distinct composition from garnet in adjacent metapelitic rocks, and similarity in the composition of mineral inclusions (biotite, hornblende) in the garnet and in the matrix. Absence of garnet-bearing enclaves in the pluton and lack of sillimanite (fibrolite) and cordierite inclusions in magmatic garnet suggests that the garnet was not produced by assimilation of meta-sedimentary country rocks. Also, the δ18O values of garnet in the pluton (8.3–8.7‰) are significantly lower than δ18O values of garnet in the metapelitic rocks (12.5–13.1‰). Amphibole-plagioclase and garnet-biotite thermometers indicate crystallization temperatures of 708°C and 790°C, respectively. A temperature of 692°C obtained by quartz-garnet oxygen isotope thermometry points to a closure temperature for oxygen diffusion in garnet. The composition of epidote (Xep) and garnet (Xadr) indicates ~800°C for the crystallization temperature of these minerals. Elevated andradite content in the rims of garnet suggests that oxygen fugacity increased during crystallization.  相似文献   
92.
高建飞  丁悌平 《地质论评》2011,57(5):670-674
在运用常规方法和激光烧蚀同位素分析方法分别对云霄晶洞花岗岩和伟晶岩(长石、石英和石榴子石)的硅、氧同位素组成进行研究的基础上,探讨了晶涧花岗岩及其含石榴子石伟晶岩的物质来源及形成条件.伟晶岩中的石英和长石的氧、硅同位素组成分别较之花岗岩中的石英和长石的氧、硅同位素组成,均未发生明显变化,表明二者岩浆来源一致.云霄县的乌...  相似文献   
93.
辽宁瓦房店金刚石矿区金伯利岩中的石榴石一直被当作镁铝榴石。为了确定矿区颜色复杂的石榴石种类,本文对矿区的石榴石进行了系统的采样分析,测定了112件石榴石样品的晶胞参数、50件样品的微区化学成分和40件样品的红外光谱。利用石榴石晶胞参数、红外光谱、化学成分和化学分子式方法对矿区石榴石进行分类,结果显示:晶胞参数分类法误差大,容易得出错误结论;红外图谱分类法准确度不高,只能作为参考方法;化学成分分类法太过笼统,达不到详细划分石榴石种类的目的;化学分子式分类法可把矿区的石榴石详细划分6个矿种:镁钙铁-铝铬铁榴石、镁铁钙-铝铬铁榴石、镁钙铁-铝铬榴石、镁钙-铝铬铁镁榴石、镁铁钙-铝铬榴石、镁铁钙-铝铁铬榴石,每种石榴石都充分反映了A、B离子的种类及占位特征,是4种分类方法中最为科学的方法。研究认为瓦房店金刚石矿区金伯利岩中石榴石A端元成分以Mg2+离子占位为主;B端元成分以Al3+离子占位为主。由于阳离子替代普遍,A、B端元成分复杂,瓦房店金伯利岩中不存在单纯意义上的镁铝榴石。  相似文献   
94.
Quantitative strain rates at outcrop scale are very difficult to obtain, but they may be estimated from crystals with curved inclusion trails by calculating rotation rates from growth rates and corresponding deflections of the internal foliation. Garnet in a quartzose pelite at Passo del Sole in the central Swiss Alps is extraordinarily valuable for calculation of strain rates during Alpine orogenesis, because the unusual zoning patterns clearly define the kinetics of its nucleation and growth. Complex concentric zoning patterns can be correlated from one crystal to another in a hand sample, based on compositional and microstructural similarities; the ubiquity of these features demonstrates that all garnet crystals nucleated at nearly the same time. Compositional bands whose radial widths are proportional to crystal size provide evidence for growth governed by the kinetics of intergranular diffusion of locally sourced nutrients. Together, these constraints increase the reliability of estimates of rates of garnet growth, and the strain‐rate calculations that depend on them. To obtain growth rates, PT conditions during garnet crystallization were modelled in a series of pseudosections, and compositional evolution was connected to rates of garnet growth by means of an independently determined heating rate. These growth rates, combined with measured amounts of curvature of inclusion trails, indicate that the time‐averaged strain rate at Passo del Sole during Alpine metamorphism was on the order of 10?14 s?1. Strain rates calculated using rotational v. non‐rotational models are similar in magnitude. The constraints on crystallization kinetics also allow direct calculation of strain rates during individual stages of garnet growth, revealing short‐term increases to values on the order of 10?13 s?1. These higher strain rates are correlated with the growth of concentric high‐Ca or high‐Mn zones in garnet, which implies that strain softening associated with the transient passage of fluids is responsible for acceleration of deformation during these intervals.  相似文献   
95.
Obituary     
Geological sections are still best drawn at natural scale. Sections with vertical exaggerations are rarely drawn correctly, and even when computed carefully give a false notion of the structural features. Many schematic sections which are not drawn to scale and are supposed to explain a proposed new tectonic interpretation give such a distorted and frequently absurd picture of the structural features that they cannot be regarded as valid.  相似文献   
96.
Adakites are increasingly being recognized worldwide in a variety of tectonic settings. Models on the formation of this geochemically distinct class of volcanic rocks have evolved from partial melting of subducted young, hot oceanic slabs to magmatism resulting from oblique subduction, low‐angle or flat subduction, or even slab‐tearing. Some workers have also pointed to the partial melting of thickened crust to explain the generation of adakitic melts. Rare earth element ratios from adakites and adakitic rocks in the Philippines were used in this study to obtain approximations of the levels where they were generated. These were tied to available geophysical data that defines the crustal thickness of the areas where the samples were collected. High Sm/Yb and La/Yb ratios denote the involvement of amphiboles, and in some cases garnet, in the generation of adakites and adakitic magmas. The presence of amphibole and garnet as residual phases suggests high pressures corresponding to thicker crust (~30 to 45 km). Adakites and adakitic rocks formed through processes other than melting of subducted young oceanic crust would need ≥30 km to account for the heavy rare earth element signatures. If mantle fractionation is not the process involved, crustal thickness is critical to generate adakites and adakitic rocks.  相似文献   
97.
Foliated garnet-bearing granite, usually associated with high pressure and ultrahigh -pressure (UHP) metamophic rocks, is a particular rock-type extensively exposed in the Mesozoic Dabie-Sulu orogenic belt of China. This study focuses on deformation features and SHRIMP zircon dating of foliated garnet granite in a high-pressure metamorphic unit from Huwan, western Dabie Mountains in order to resolve discrepancies in current versions of its petrogenesis and structural evolution. SHRIMP dating reveals a zircon age of 762 ± 15 Ma (MSWD=1.7) for Huwan granites, representing the Middle to Late Neoproterozoic age of intrusion and crystallization. Field and microstructural studies show that the Huwan granite body underwent multiple-stage deformation. The deformation was manifested by an early stage of rootless folding and imposition of relict foliation (S1); an Indosinian main stage marked by imposition of north-dipping penetrative gneissosity (S2) and development of ductile shear zones under NNE-SSW directed compression; and a final Indosinian stage of southward thrusting of the Huwan high-pressure unit. Shallow level extension prevailed after the Late Triassic, giving rise to south-dipping thrust faults and north-dipping normal faults. Supported by the National Natural Science Foundation of China (Grant Nos. 40802046 and 40334037) and the Project of Science & Technology Research and Development from Sinopec (Grant No. P02009)  相似文献   
98.
湖南省柿竹园矽卡岩矿床中石榴石特征   总被引:4,自引:0,他引:4       下载免费PDF全文
尹京武  李铉具 《地球科学》2000,25(2):163-171
通过野外与显微镜观察和电子探针分析, 对柿竹园多金属矿床矽卡岩中石榴石的特征进行了研究.根据石榴石的产出状态、矿物的共生组合, 矽卡岩可分为4个带: 磁铁矿-辉石-石榴石带、辉石-石榴石带、符山石-石榴石带、矽卡岩化大理岩带.从成分上的变化, 探讨了石榴石在各矽卡岩带中的特征.柿竹园矿床矽卡岩中的石榴石可分为早、晚两期, 早期形成的石榴石颜色为暗棕色, 并且在垂直和水平方向上有明显的变化规律.从磁铁矿-辉石-石榴石带到矽卡岩化大理石带, 随着石榴石中Fe2O3含量的减少, Al2O3含量的增加, 由钙铁榴石向钙铝榴石变化; 石榴石晶体具有从核部向边缘由均质性向非均质性变化的规律.早期石榴石形成于较氧化的条件下, 温度为520~620℃, 压力为1000×105Pa, 由富含Si, Al, Fe, Cl, F组分的热液和泥盆纪佘田桥组灰岩反应交代形成.当温度降至450~ 540℃, pH, Eh值降低时, 晚期石榴石形成的同时使白钨矿沉淀.晚期石榴石颜色比早期形成的石榴石浅, 为红色.结晶颗粒较大, 并且, 普遍可以观察到石榴石环带结构.   相似文献   
99.
Garnet peridotites from the southern Su‐Lu ultra‐high‐pressure metamorphic (UHPM) terrane, eastern China, contain porphyroblastic garnet with aligned inclusions comprising a low‐P–T mineral assemblage (chlorite, hornblende, Na‐gedrite, Na‐phlogopite, talc, spinel and pyrite). Orthopyroxene porphyroblasts show fine exsolution lamellae of clinopyroxene and minor chromite. A clinopyroxene inclusion in garnet shows some orthopyroxene exsolution lamellae. Both the rims of porphyroblastic pyroxene and garnet and the matrix pyroxene and garnet crystallized at the expense of olivine. This is interpreted as a result of metasomatism of the peridotites by an SiO2‐rich melt at UHP conditions. A chromian garnet further overgrew on the rims of the garnet. The XMg values (Mg/(Mg+Fe)) of porphyroblastic garnet decrease from core to rim and vary in different peridotite samples, while the compositions of both the porphyroblastic and the matrix pyroxene are similar in terms of Ca–Mg–Fe. The Mg‐rich cores of porphyroblastic garnet and orthopyroxene record high temperatures and pressures (c. 1000 °C, ≥5.1 GPa), whereas the matrix minerals, including the rims of porphyroblasts, record much lower P–T (c. 4.2 GPa, c. 760 °C). Sm–Nd data give apparent isochron ages of c. 380 Ma and negative εNd(0) values (c.?9). These dates are considered meaningless due to isotopic disequilibrium between garnet cores and the rest of the rocks. The isotopic disequilibrium was probably caused by metasomatism of the peridotites by melt/fluids derived from the coevally subducted crustal materials. On the other hand, the Rb–Sr isotopic systems of phlogopite and clinopyroxene appear to have reached equilibrium and record a cooling age of c. 205 Ma. It is suggested that the garnet peridotites were originally emplaced into a low‐P–T environment prior to the c. 220 Ma continental collision, during which they were subducted together with crustal rocks to mantle depth and subjected to UHP metamorphism. An important corollary is that at least some of the coevally subducted crustal rocks in the Su‐Lu terrane have been subjected to peak metamorphism at P–T conditions much higher than presently estimated (≥2.7 GPa, ≤800 °C).  相似文献   
100.
Garnet‐bearing peridotite lenses are minor but significant components of most metamorphic terranes characterized by high‐temperature eclogite facies assemblages. Most peridotite intrudes when slabs of continental crust are subducted deeply (60–120 km) into the mantle, usually by following oceanic lithosphere down an established subduction zone. Peridotite is transferred from the resulting mantle wedge into the crustal footwall through brittle and/or ductile mechanisms. These ‘mantle’ peridotites vary petrographically, chemically, isotopically, chronologically and thermobarometrically from orogen to orogen, within orogens and even within individual terranes. The variations reflect: (1) derivation from different mantle sources (oceanic or continental lithosphere, asthenosphere); (2) perturbations while the mantle wedges were above subducting oceanic lithosphere; and (3) changes within the host crustal slabs during intrusion, subduction and exhumation. Peridotite caught within mantle wedges above oceanic subduction zones will tend to recrystallize and be contaminated by fluids derived from the subducting oceanic crust. These ‘subduction zone peridotites’ intrude during the subsequent subduction of continental crust. Low‐pressure protoliths introduced at shallow (serpentinite, plagioclase peridotite) and intermediate (spinel peridotite) mantle depths (20–50 km) may be carried to deeper levels within the host slab and undergo high‐pressure metamorphism along with the enclosing rocks. If subducted deeply enough, the peridotites will develop garnet‐bearing assemblages that are isofacial with, and give the same recrystallization ages as, the eclogite facies country rocks. Peridotites introduced at deeper levels (50–120 km) may already contain garnet when they intrude and will not necessarily be isofacial or isochronous with the enclosing crustal rocks. Some garnet peridotites recrystallize from spinel peridotite precursors at very high temperatures (c. 1200 °C) and may derive ultimately from the asthenosphere. Other peridotites are from old (>1 Ga), cold (c. 850 °C), subcontinental mantle (‘relict peridotites’) and seem to require the development of major intra‐cratonic faults to effect their intrusion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号