首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   570篇
  免费   69篇
  国内免费   311篇
测绘学   3篇
大气科学   25篇
地球物理   52篇
地质学   718篇
海洋学   113篇
天文学   1篇
综合类   33篇
自然地理   5篇
  2024年   6篇
  2023年   15篇
  2022年   15篇
  2021年   19篇
  2020年   20篇
  2019年   26篇
  2018年   25篇
  2017年   43篇
  2016年   29篇
  2015年   30篇
  2014年   46篇
  2013年   38篇
  2012年   53篇
  2011年   43篇
  2010年   44篇
  2009年   40篇
  2008年   39篇
  2007年   52篇
  2006年   44篇
  2005年   42篇
  2004年   37篇
  2003年   17篇
  2002年   27篇
  2001年   26篇
  2000年   11篇
  1999年   25篇
  1998年   19篇
  1997年   12篇
  1996年   27篇
  1995年   16篇
  1994年   11篇
  1993年   8篇
  1992年   7篇
  1991年   11篇
  1990年   8篇
  1989年   3篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1978年   2篇
排序方式: 共有950条查询结果,搜索用时 15 毫秒
101.
邓浩  刘晓霞  赵莹 《江苏地质》2016,40(3):395-402
金川铜镍矿床是世界第三大铜镍硫化物岩浆矿床,现有研究表明其成矿模式为岩浆通道成矿,但是对于金川超基性岩体的侵位过程存在较大争议。为探索岩体的侵位过程,将岩浆侵位描述为马尔可夫(Markov)过程,提出一种基于Markov链的岩体侵位模拟算法,实现对金川超基性岩体侵位过程的模拟。以金川Ⅱ矿区为例,探讨了侵位过程与矿化的关联及岩浆通道骨架,为在矿床深部寻找第二成矿空间提供方向和线索。  相似文献   
102.
随着湖库外源性污染的有效控制,沉积物污染特征成为影响湖库水环境质量的关键因素。本文以富硫型水库——汤河水库为研究对象,分析探讨水库沉积物的理化性质、重金属总量、酸可挥发性硫化物(acid volatile sulfide,AVS)和同步提取重金属(simultaneously extracted metals,SEM)的空间分布特征,采用沉积物基准法(sediment quality guidelines, SQGs)和AVS与SEM关系法对重金属可能诱发的生态风险和毒性效应进行评估。结果表明:汤河水库沉积物中AVS含量在0.03~51.75 μmol/g之间,并呈现坝前深水区>东支流库区>西支流库区的空间分布特征。根据Pearson相关性分析可知,汤河水库沉积物AVS含量与间隙水中SO42-浓度、沉积物烧失量(LOI)含量呈显著正相关,与沉积物间隙水中NO3-浓度和沉积物pH呈现显著负相关。间隙水中SO42-浓度和沉积物LOI含量是控制AVS产量的重要因素。水库沉积物中ΣSEM变化范围为0.52~2.75 μmol/g,呈现出东支流库区>坝前深水区>西支流库区的分布规律。水库沉积物中ΣSEM/AVS和ΣSEM-AVS的变化范围分别为0.06~22.73和-49.18~2.44 μmol/g,显示出水库坝前深水区表层0~10 cm沉积物不具有生态风险,而东、西支流库区沉积物中的SEM因为不能完全被AVS所固定而存在潜在生态风险。就单一重金属而言,汤河水库坝前深水区和东西支流中部区域沉积物Ni、Cu、Pb和Zn含量均介于临界效应含量(threshold effects level, TEL)值和可能效应含量(probable effect level, PEL)值之间,可产生低级风险毒性效应,但Ni的毒性效应风险接近中级,今后应予以重点关注。富硫型水库沉积物中容易出现高含量AVS,沉积物间隙水中SO42-和NO3-的浓度是决定沉积物AVS净产量的重要因素。流域内重金属土壤背景值以及工业、采矿产业排放的废水类型直接影响着诱发生态风险的重金属种类。  相似文献   
103.
Analysis was carried out of part of the northern North Sea to test what the presence and style of gas chimneys indicate about fluid pressure (Pf) within hydrocarbon reservoirs. Previous results suggest that broad chimneys above a trap and thin chimneys on the flanks indicate the presence of hydrocarbons, whilst thin chimneys in the crest suggest the hydrocarbons have escaped. Each type of gas chimney is usually associated with overpressure within Mesozoic reservoirs, but the water leg is hydrostatically-pressured in most Cenozoic reservoirs. This indicates: (a) gas leaking from a trap does not necessarily cause Pf to become hydrostatic; (b) overpressure may not be necessary for the expulsion of gasses through seal units to create the chimneys; (c) although gas chimneys indicate the existence of an active hydrocarbon system, their presence does not appear to indicate anything significant about present-day Pf.  相似文献   
104.
Liujiaping VMS (volcanic massive sulfide) deposit contains mainly copper and zinc, which is located at the Longmenshan orogenic belt of the northwestern margin of Yangtze block. The deposit is hosted in Neoproterozoic Datan terrane (composed of Datan granitoids and Liujiaping group) and is a typical, and the biggest, VMS deposit in this area. The Datan granitoids and Liujiaping group are contemporary and both parental magmas have the same genesis. The tectonic evolution history of Northwestern Yangtze is complicated. Chronology, isotope and geochemistry of the Liujiaping VMS ores and wall rocks (especially the Datan granitoids) are analyzed to restrict the tectonic progress. High‐precision secondary ion mass spectrometry (SIMS) analysis of the Datan granitoids resulted in two concordant ages, 815.5 ± 3.2 Ma and 835.5 ± 2.6 Ma, which are contemporary with the Liujiaping Cu–Zn ore and volcanics. The wall rocks are characterized by enrichment in LREE and with a weak negative anomaly of Eu. The Pb isotope data of sulfide and volcanics from the Liujiaping deposit indicate that the material source is lower crust. Together with variable negative anomalies of high strength field elements HFSE (Th, Nb, Ta, Zr, Hf, P and Ti), positive εNd (825 Ma) values (+1.8 to +3.1) and the Nd model age T2DM = 1.2–1.3 Ga, it shows that the Liujiaping deposit and wall rocks were formed by partial melting of Mesoproterozoic lower crust. Geological and geochemical characteristics of Liujiaping deposit indicate that this deposit was formed during subduction of the oceanic crust. This study clarified that that the Liujiaping deposit and the northwestern margin of the Yangtze block were part of an arc setting at ~820 Ma rather than intra‐continental rift.  相似文献   
105.
During the past strong ground motions, chimneys constructed according to international standards are representative of similar structures at industrial areas throughout the world, including those collapsed or moderately damaged in earthquake-prone regions. This is due to the specialty of structural characteristics and the special loads acting on the structure such as earthquakes, wind and differences in the level of temperature, etc. In this context, the researchers and designers should focus on the dynamic behavior of chimneys especially under high temperature and seismic effects. For this purpose, the main focus of this study is to evaluate the dynamic response of a chimney under the above-mentioned effects considering soil-structure interaction (SSI). A 52 m steel chimney in Yeşilyurt township of Samsun City in Turkey was studied. The in-situ model testing and numerical models were compared. Before the commissioning of the chimney, a series of tests was realized to define its dynamic characteristics in case of no-heat and after the fabric got to work, the same tests were repeated for the same sensor locations to understand the heat effect on the dynamic response of the chimney. The ambient vibration tests are proven to be fast and practical procedures to identify the dynamic characteristics of those structures. The dynamic testing of the towers promises a widespread use, as the identification of seismic vulnerability of such structures becomes increasingly important. The data presented in this study are considered to be useful for the researchers and engineers, for whom the temperature and SSI effects on steel chimneys are a concern. Using the modal analysis techniques, presented finite element simulation for the soil/pile foundation-chimney interaction system is verified. The results of modal analyses using numerical solutions are shown to have acceptable accuracy compared with results obtained by in-situ test. The present study also aims to provide designers with material examples about the influence of these on the seismic performance of steel chimneys by means of reflecting the changes in the dynamic behavior.  相似文献   
106.
There are two types of temporally and spatially associated intrusions within the Emeishan large igneous province (LIP); namely, small uitramafic subvolcanic sills that host magmatic Cu-Ni-Platinum Group Element (PGE)-bearing sulfide deposits and large mafic layered intrusions that host giant Ti-V magnetite deposits in the Panxi region. However, except for their coeval ages, the genetic relations between the ore-bearing intrusions and extrusive rocks are poorly understood. Phase equilibria analysis (Q-PI-OI-Opx-Cpx system) has been carried out to elucidate whether ore-bearing Panzhihua, Xinjie and Limahe intrusions are co-magmatic with the picrites and flood basalts (including high-Ti, low-Ti and alkali basalts), respectively. In this system, the parental magma can be classified as silica-undersaturated olivine basalt and silica-saturated tholeiite. The equivalents of the parental magma of the Xinjie and Limahe peridotites and picrites and iow-Ti basalts are silica-undersaturated, whereas the Limahe gabbro-diorites and high-Ti basalts are silica-saturated. In contrast, the Panzhihua intrusion appears to be alkali character. Phase equilibria relations clearly show that the magmas that formed the Panzhihua intrusion and high-Ti basalts cannot be co-magmatic as there is no way to derive one liquid from another by fractional crystallization. On the other hand, the Panzhihua intrusion appears to be related to Permian alkali intrusions in the region, but does not appear to be related to the alkali basalts recognized in the Longzhoushan lava stratigraphy. Comparably, the Limabe intrusion appears to be a genetic relation to the picrites, whereas the Xinjie intrusion may be genetically related to be low-Ti basaits. Additionally, the gabbro-diorites and peridotites of the Limahe intrusion are not co-magmatic, and the former appears to be derived liquid from high-Ti basalts.  相似文献   
107.
Abstract: The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the third-largest magmatic sulfide Ni–Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Ni-rich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi–MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu–Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.  相似文献   
108.
Abstract: The Shijuligou deposit was separated by an arcuate ductile shear zone cross the center of the deposit region, resulting in the difference between the southern and northern ore bodies. The lead (Pb) isotopic data of ores of the Shijuligou copper deposit have averages of 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb in 17.634, 15.444, and 37.312, respectively. It has been shown that ore-forming metals originated from intrusive and extrusive rocks in the upper part of ophiolites. The sulfur isotopic data of pyrite and chalcopyrite in the northern part change from +7.61‰ to +8.09‰ and +4.95‰ to +8.88‰ in the southern part. Isotopes of δ18O in the Shijuligou copper deposit are between +11.1‰ and +18.6‰, with the calculated δ18OH2O at +0.65‰. It is suggested that the mineralized fluid is a mixture of magma fluid, meteorological water, and seawater through circulating and leaching metals from the volcanic rocks. The zircon uranium-lead (U–Pb) dating of gabbro is 457.9±1.2 Ma, and the lower crossing age of the discordant and concordia curves of pyroxene spilite of zircon is 454±15 Ma. It is indicated that the Shijuligou deposit formed in a new ocean crust (ophiolite) of the back-arc basin in the late Ordovician. Mineralization should occur in the intermittence period after strong volcanic activity, and the age should be the late Ordovician. Moreover, the mineralization of ophiolite-hosted massive sulfide deposits in the ancient orogenic belt of the late Ordovician in the northern Qilian Mountains was controlled by the primary fault/fracture, with the forming of a metallogenic hydrothermal system by a mixture of volcanic magma fluid and seawater, which circularly leached the metallogenic metals from the volcanic rocks, resulting in their accumulation. The ore bodies were transformed with morphology and metallogenic elements. Jasperoid is an important sign for prospecting such deposits. There were many island arcs in the continent of China. This study provides evidence for understanding and exploration of ophiolite-hosted massive sulfide deposits in western China, especially in the area of northern Qilian Mountains.  相似文献   
109.
Modern seafloor hydrothermal systems provide important insights into the formation and discovery of ancient volcanic-hosted massive sulfide (VHMS) deposits. In 2010, Integrated Ocean Drilling Program (IODP) Expedition 331 drilled five sites in the Iheya North hydrothermal field in the middle Okinawa Trough back-arc basin, Japan. Hydrothermal alteration and sulfide mineralization is hosted in a geologically complex, mixed sequence of coarse pumiceous volcaniclastic and fine hemipelagic sediments, overlying a dacitic to rhyolitic volcanic substrate. At site C0016, located adjacent to the foot of the actively venting North Big Chimney massive sulfide mound, massive sphalerite-(pyrite-chalcopyrite ± galena)-rich sulfides were intersected (to 30.2% Zn, 12.3% Pb, 2.68% Cu, 33.1 ppm Ag and 0.07 ppm Au) that strongly resemble the black ore of the Miocene-age Kuroko deposits of Japan. Sulfide mineralization shows clear evidence of formation through a combination of surface detrital and subsurface chemical processes, with at least some sphalerite precipitating into void space in the rock. Volcanic rocks beneath massive sulfides exhibit quartz-muscovite/illite and quartz-Mg-chlorite alteration reminiscent of VHMS proximal footwall alteration associated with Kuroko-type deposits, characterized by increasing MgO, Fe/Zn and Cu/Zn with depth. Recovered felsic footwall rocks are of FII to FIII affinity with well-developed negative Eu anomalies, consistent with VHMS-hosting felsic rocks in Phanerozoic ensialic arc/back-arc settings worldwide.Site C0013, ∼100 m east of North Big Chimney, represents a likely location of recent high temperature discharge, preserved as surficial coarse-grained sulfidic sediments (43.2% Zn, 4.4% Pb, 5.4% Cu, 42 ppm Ag and 0.02 ppm Au) containing high concentrations of As, Cd, Mo, Sb, and W. Near surface hydrothermal alteration is dominated by kaolinite and muscovite with locally abundant native sulfur, indicative of acidic hydrothermal fluids. Alteration grades to Mg-chlorite dominated assemblages at depths of >5 mbsf (metres below sea floor). Late coarse-grained anhydrite veining overprints earlier alteration and is interpreted to have precipitated from down welling seawater as hydrothermal activity waned. At site C0014, ∼350 m farther east, hydrothermal assemblages are characterized by illite/montmorillonite, with Mg-chlorite present at depths below ∼30 mbsf. Recovered lithologies from distal, recharge site C0017 are unaltered, with low MgO, Fe2O3 and base metal concentrations.Mineralization and alteration assemblages are consistent with the Iheya North system representing a modern analogue for Kuroko-type VHMS mineralization. Fluid flow is focussed laterally along pumiceous volcaniclastic strata (compartmentalized between impermeable hemipelagic sediments), and vertically along faults. The abundance of Fe-poor sphalerite and Mg-rich chlorite (clinochlore/penninite) is consistent with the lower Fe budget, temperature and higher oxidation state of felsic volcanic-hosted hydrothermal systems worldwide compared to Mid Ocean Ridge black smoker systems.  相似文献   
110.
The Ni-Co-(PGE) sulfide deposits of the Thompson Nickel Belt (TNB) in Northern Manitoba, Canada are part of the fifth largest nickel camp in the world based on contained nickel; past production from the TNB deposits is 2500 kt Ni. The Thompson Deposit is located on the eastern and southern flanks of the Thompson Dome structure, which is a re-folded nappe structure formed during collision of the Trans-Hudson Orogen with the Canadian Shield at 1.9–1.7 Ga. The Thompson Deposit is almost entirely hosted by P2 member sulfidic metasedimentary rocks of the Paleoproterozoic Ospwagan Group. Variably serpentinised and altered dunites, peridotites and pyroxenites contain disseminated sulfides and have a spatial association with sediment-hosted Ni sulfides which comprise the bulk of the ore types. These rocks formed from rift-related komatiitic magmas that were emplaced at 1.88 Ga, and subsequently deformed by boudinage, thinning, folding, and stacking.Disseminated sulfide mineralization in the large serpentinised peridotite and dunite intrusions that host the Birchtree and Pipe Ni-Co sulfide deposits typically has 4–6 wt% Ni in 100% sulfide. The disseminated sulfides in the less abundant and much smaller boudinaged serpentinised peridotite and dunite bodies associated with the Thompson Deposit have 7–10 wt% Ni in 100% sulfide. The majority of Thompson Mine sulfides are hosted in the P2 member of the Pipe Formation which is a sulfidic schist developed from a shale prololith; the mineralization in the schist includes both low Ni tenor (<1 wt% Ni in sulfide) and barren sulfide (<200 ppm Ni) and a Ni-enriched sulfide with 1–18 wt% Ni in 100% sulfide. The semi-massive and massive sulfide ores show a similar range in Ni tenor to the metasediment-hosted mineralization, but there are discrete populations with maximum Ni tenors of ∼8, 11 and 13 wt% Ni in 100% sulfide. The variations in Ni tenor are related to the Ni/Co ratio (high Ni/Co correlates with high Ni tenor sulfide) and this relationship is produced by the different Ni/Co ratios in sulfides with a range in proportions of pyrrhotite and pentlandite. Geological models of the ore deposit, host rocks, and sulfide geochemical data in three dimensions reveal that the Thompson Deposit forms an anastomosing domain on the south and east flanks of a first order D3 structure which is the Thompson Dome. In detail, a series of second order doubly-plunging folds on the eastern and southern flank control the geometry of the mineral zones. The position of these folds on the flank of the Thompson Dome is a response to the anisotropy of the host rocks during deformation; ultramafic boudins and layers of massive quartzite in ductile metasedimentary rocks control the geometry of the doubly-plunging F3 structures. The envelope of mineralization is almost entirely contained within the P2 member of the Pipe formation, so the deposit is clearly folded by the first order and second order D3 structures. The sulfides with highest Ni tenor (typically >13 wt% Ni in sulfide) define a systematic trend that mirrors the configuration of the second order doubly-plunging F3 structures on the flanks of the Dome. Although moderate to high Ni tenor mineralization is sometimes localized in fold hinges, more typically the highest Ni tenor mineralization is located on the flanks of the fold structures.There is no indication of the mineralogical and geochemical signatures of sedimentary exhalative or hydrothermal processes in the genesis of the Thompson ores. The primary origin of the mineralization is undoubtedly magmatic and this was a critical stage in the development of economic mineralization. Variations in metal tenor in disseminated sulfides contained in ultramafic rock indicate a higher magma/sulfide ratio in the Thompson parental magma relative to Birchtree and Pipe. The variation in Ni tenor of the semi-massive and massive sulfide broadly supports this conclusion, but the variations in metal tenor in the Thompson ores was likely created partly during deformation. The sequence of rocks was modified by burial and loading of the crust (D2 events) to a peak temperature of 750 °C and pressure of 7.5 kbar. The third major phase of deformation (D3) was a sinistral transpression (D3 event) which generated the dome and basin configuration of the TNB. These conditions allowed for progressive deformation and reformation of pyrrhotite and pentlandite into monosulfide solid solution as pressure and temperature increased; this process is termed sulfide kinesis. Separation of the ductile monosulfide solid solution from granular pentlandite would result in an effective separation of Ni during metamorphism, and the monosulfide solid solution would likely be spread out in the stratigraphy to form a broad halo around the main deposit to produce the low Ni tenor sulfide. Reformation of pentlandite and pyrrhotite after the peak D2 event would explain the broad footprint of the mineral system. The effect of the D3 event at lower pressure and temperature would have been to locally redistribute, deform, and repeat the lenses of sulfide.The understanding of the relationships between petrology, stratigraphy, structure, and geochemistry has assisted in formulating a predictive exploration model that has triggered new discoveries to the north and south of the mine, and provides a framework for understanding ore genesis in deformed terrains and the future exploration of the Thompson Nickel Belt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号