首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1475篇
  免费   252篇
  国内免费   608篇
测绘学   5篇
大气科学   13篇
地球物理   430篇
地质学   1570篇
海洋学   82篇
天文学   9篇
综合类   22篇
自然地理   204篇
  2024年   8篇
  2023年   30篇
  2022年   58篇
  2021年   80篇
  2020年   75篇
  2019年   75篇
  2018年   78篇
  2017年   89篇
  2016年   75篇
  2015年   78篇
  2014年   69篇
  2013年   110篇
  2012年   107篇
  2011年   62篇
  2010年   73篇
  2009年   99篇
  2008年   77篇
  2007年   116篇
  2006年   121篇
  2005年   89篇
  2004年   100篇
  2003年   84篇
  2002年   68篇
  2001年   60篇
  2000年   68篇
  1999年   55篇
  1998年   41篇
  1997年   50篇
  1996年   57篇
  1995年   35篇
  1994年   35篇
  1993年   26篇
  1992年   24篇
  1991年   12篇
  1990年   13篇
  1989年   10篇
  1988年   18篇
  1987年   2篇
  1986年   6篇
  1984年   1篇
  1983年   1篇
排序方式: 共有2335条查询结果,搜索用时 234 毫秒
61.
Swarms of mafic-intermediate volcaniclastic bodies occur in the Minggang region of Henan Province, a tectonic boundary between the North Qinling and the North China Block, and emplaced at (178.31±3.77) Ma. These volcanic rocks are subalkaline basaltic andesites and contain abundance of lower crust and mantle xenoliths. Thus this area is an ideal place to reveal the lithospheric composition and structure beneath the northern margin of the Qinling orogenic belt. Geochemical data indicate that these mafic granulites, eclogites and metagabbros have trace elemental and Pb isotopic characteristics very similar to those rocks from the South Qinling Block, representing the lower part of lower crust of the South Qinling which subducted beneath the North China Block. Talcic peridotites represent the overlying mantle wedge materials of the North China Block, which underwent the metasomatism of the acidic melt/fluid released from the underlying lower crust of the South Qinling Block. Deep tectonic model proposed i  相似文献   
62.
Being a composite collisional orogen between North China and South China blocks, the Qinling orogenic belt is the key to understand the composite combination, prolonged evolutionary history and their continental dynamics. The main suture between north and south Qinling, called Shangdan suture zone (SDSZ), had been studied in detail for about twenty years. Recently, another suture zone, called Mianl黣 suture zone (MLSZ), has been identified in the Qinling Mountains. It is characterized b…  相似文献   
63.
64.
65.
66.
The Kuoerzhenkuola gold field (including the Kuo- erzhenkuola and the Buerkesidai gold deposits), lo- cated 68 km east of Jimunai County in northern Xing- jiang, China, is an important component of the Sawuer gold belt which is the eastward extending part of the Zarma-Sawur gold-copper belt in Kazakhstan. Some studies are concerned with the geology of the gold ores[1―3], the associated volcanic rocks[4], radiogenic isotope[5―8], and the ore-forming environment[8]. Most researchers inferr…  相似文献   
67.
We present 39Ar–40Ar dating of phengite, muscovite and paragonite from a set of mafic and metasedimentary rocks sampled from the high-pressure (HP) metaophiolites of the Voltri Group (Western Alps) and from clasts in the basal layer conglomerates from the Tertiary molasse which overlie the high-pressure basement. The white mica-bearing rocks display peak eclogitic and blueschist-facies parageneses, locally showing complex greenschist-facies replacement textures. The internal discordance of age spectra is proportional to the chemical complexity of the micas. High-Si phengites from eclogite clasts record a 39Ar–40Ar age of ca. 49 Ma for the eclogite stage and ca. 43 Ma for the blueschist retrogression; phengites from a blueschist basement sample yield an age of ca. 40 Ma; low-Si muscovite from a metasediment dates the formation of the greenschist paragenesis at ca. 33 Ma. Our data indicate that the analyzed samples reached high-pressure conditions at different times over a time-span of c.a. 10 Ma. Subduction was continuing during exhumation and blueschist retrograde re-equilibration of higher-pressure, eclogite-facies rocks. This process kept the isotherms depressed, allowing the older HP-rocks to escape thermal re-equilibration. Our results, added to literature data, fit a tectonic model of a subduction–exhumation cycle, with different tectonic slices subducted at different times from Early Eocene until the Eocene–Oligocene boundary.  相似文献   
68.
Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision,especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrnsting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.  相似文献   
69.
70.
Seismic tomography studies in the northeastern Japan arc have revealed the existence of an inclined sheet-like seismic low-velocity and high-attenuation zone in the mantle wedge at depths shallower than about 150 km. This sheet-like low-velocity, high-attenuation zone is oriented sub-parallel to the subducted slab, and is considered to correspond to the upwelling flow portion of the subduction-induced convection. The low-velocity, high-attenuation zone reaches the Moho immediately beneath the volcanic front (or the Ou Backbone Range) running through the middle of the arc nearly parallel to the trench axis, which suggests that the volcanic front is formed by this hot upwelling flow. Aqueous fluids supplied by the subducted slab are probably transported upward through this upwelling flow to reach shallow levels beneath the Backbone Range where they are expelled from solidified magma and migrate further upward. The existence of aqueous fluids may weaken the surrounding crustal rocks, resulting in local contractive deformation and uplift along the Backbone Range under the compressional stress field of the volcanic arc. A strain-rate distribution map generated from GPS data reveals a notable concentration of east–west contraction along the Backbone Range, consistent with this interpretation. Shallow inland earthquakes are also concentrated in the upper crust of this locally large contraction deformation zone. Based on these observations, a simple model is proposed to explain the deformation pattern of the crust and the characteristic shallow seismic activity beneath the northeastern Japan arc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号