首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1475篇
  免费   252篇
  国内免费   608篇
测绘学   5篇
大气科学   13篇
地球物理   430篇
地质学   1570篇
海洋学   82篇
天文学   9篇
综合类   22篇
自然地理   204篇
  2024年   8篇
  2023年   30篇
  2022年   58篇
  2021年   80篇
  2020年   75篇
  2019年   75篇
  2018年   78篇
  2017年   89篇
  2016年   75篇
  2015年   78篇
  2014年   69篇
  2013年   110篇
  2012年   107篇
  2011年   62篇
  2010年   73篇
  2009年   99篇
  2008年   77篇
  2007年   116篇
  2006年   121篇
  2005年   89篇
  2004年   100篇
  2003年   84篇
  2002年   68篇
  2001年   60篇
  2000年   68篇
  1999年   55篇
  1998年   41篇
  1997年   50篇
  1996年   57篇
  1995年   35篇
  1994年   35篇
  1993年   26篇
  1992年   24篇
  1991年   12篇
  1990年   13篇
  1989年   10篇
  1988年   18篇
  1987年   2篇
  1986年   6篇
  1984年   1篇
  1983年   1篇
排序方式: 共有2335条查询结果,搜索用时 531 毫秒
11.
The La Guitarra deposit (Temascaltepec district, South-Central Mexico), belongs to the low/intermediate sulfidation epithermal type, has a polymetallic character although it is currently being mined for Ag and Au. The mineralization shows a polyphasic character and formed through several stages and sub-stages (named I, IIA, IIB, IIC, IID, and III). The previous structural, mineralogical, fluid inclusion and stable isotope studies were used to constrain the selection of samples for volatile and helium isotope analyses portrayed in this study. The N2/Ar overall range obtained from analytical runs on fluid inclusion volatiles, by means of Quadrupole Mass Spectrometry (QMS), is 0 to 2526, and it ranges 0 to 2526 for stage I, 0 to 1264 for stage IIA, 0 to 1369 for stage IIB, 11 to 2401 for stage IIC, 19 to 324 for stage IID, and 0 to 2526 for stage III. These values, combined with the CO2/CH4 ratios, and N2-He-Ar and N2-CH4-Ar relationships, suggest the occurrence of fluids from magmatic, crustal, and shallow meteoric sources in the forming epithermal vein deposit. The helium isotope analyses, obtained by means of Noble Gas Mass Spectrometry, display R/Ra average values between 0.5 and 2, pointing to the occurrence of mantle-derived helium that was relatively diluted or “contaminated” by crustal helium. These volatile analyses, when correlated with the stable isotope data from previous works and He isotope data, show the same distribution of data concerning sources for mineralizing fluids, especially those corresponding to magmatic and crustal sources. Thus, the overall geochemical data from mineralizing fluids are revealed as intrinsically consistent when compared to each other.The three main sources for mineralizing fluids (magmatic, and both deep and shallow meteoric fluids) are accountable at any scale, from stages of mineralization down to specific mineral associations. The volatile and helium isotope data obtained in this paper suggest that the precious metal-bearing mineral associations formed after hydrothermal pulses of predominantly oxidized magmatic fluids, and thus it is likely that precious metals were carried by fluids with such origin. Minerals from base-metal sulfide associations record both crustal and magmatic sources for mineralizing fluids, thus suggesting that base metals could be derived from deep leaching of crustal rocks. At the La Guitarra epithermal deposit there is no evidence for an evolution of mineralizing fluids towards any dominant source. Rather than that, volatile analyses in fluid inclusions suggest that this deposit formed as a pulsing hydrothermal system where each pulse or set of pulses accounts for different compositions of mineralizing fluids.The positive correlation between the relative content of magmatic fluids (high N2/Ar ratios) and H2S suggests that the necessary sulfur to carry mostly gold as bisulfide complexes came essentially from magmatic sources. Chlorine necessary to carry silver and base metals was found to be abundant in inclusion fluids and although there is no evidence about its source, it is plausible that it may come from magmatic sources as well.  相似文献   
12.
Crystallization under confinement conditions is a very important process in geochemistry and geophysics. Computer simulations of fluids in nanometer scale pore spaces can provide a unique microscopic insight into the structure, dynamics and forces arising from the crystallization process. We discuss in this paper molecular dynamics computer simulations of crystallization in pores of nanometer dimensions. The crystallization pressure due to the freezing of a model of Argon in a nanopore is computed using molecular dynamics simulations. We also investigate the influence of pore geometry in determining the dynamics of confined fluids, as well as mass separation in binary mixtures. It turns out that the pore geometry reveals itself as an important variable, leading to 1) new mechanisms for fast diffusion in confined spaces, and 2) accumulation of solute in specific regions inside the pore.  相似文献   
13.
14.
15.
16.
17.
The Ernest Henry Cu–Au deposit was formed within a zoned, post-peak metamorphic hydrothermal system that overprinted metamorphosed dacite, andesite and diorite (ca 1740–1660 Ma). The Ernest Henry hydrothermal system was formed by two cycles of sodic and potassic alteration where biotite–magnetite alteration produced in the first cycle formed ca 1514±24 Ma, whereas paragenetically later Na–Ca veining formed ca 1529 +11/−8 Ma. These new U–Pbtitanite age dates support textural evidence for incursion of hydrothermal fluids after the metamorphic peak, and overlap with earlier estimates for the timing of Cu–Au mineralization (ca 1540–1500 Ma). A distal to proximal potassic alteration zone correlates with a large (up to 1.5 km) K–Fe–Mn–Ba enriched alteration zone that overprints earlier sodic alteration. Mass balance analysis indicates that K–Fe–Mn–Ba alteration—largely produced during pre-ore biotite- and magnetite-rich alteration—is associated with K–Rb–Cl–Ba–Fe–Mn and As enrichment and Na, Ca and Sr depletion. The aforementioned chemical exchange almost precisely counterbalances the mass changes associated with regional Na–Ca alteration. This initial transition from sodic to potassic alteration may have been formed during the evolution of a single fluid that evolved via alkali exchange during progressive fluid-rock interaction. Cu–Au ore, dominated by co-precipitated magnetite, minor specular hematite, and chalcopyrite as breccia matrix, forms a pipe-like body at the core of a proximal alteration zone dominated by K-feldspar alteration. Both the core and K-feldspar alteration overprint Na–Ca alteration and biotite–magnetite (K–Fe) alteration. Ore was associated with the concentration of a diverse range of elements (e.g. Cu, Au, Fe, Mo, U, Sb, W, Sn, Bi, Ag, F, REE, K, S, As, Co, Ba and Ca). Mineralization also involved the deposition of significant barite, K(–Ba)–feldspar, calcite, fluorite and complexly zoned pyrite. The complexly zoned pyrite and variable K–(Ba)–feldspar versus barite associations are interpreted to indicate fluctuating sulphur and/or barium supply. Together with the alteration zonation geochemistry and overprinting criteria, these data are interpreted to indicate that Cu–Au mineralization occurred as a result of fluid mixing during dilation and brecciation, in the location of the most intense initial potassic alteration. A link between early alteration (Na–Ca and K–Fe) and the later K-feldspathization and the Cu–Au ore is possible. However, the ore-related enrichments in particular elements (especially Ba, Mn, As, Mo, Ag, U, Sb and Bi) are so extreme compared with earlier alteration that another fluid, possibly magmatic in origin, contributed the diverse element suite geochemically independently of the earlier stages. Structural focussing of successive stages produced the distinctive alteration zoning, providing a basis both for exploration for similar deposits, and for an understanding of ore genesis.  相似文献   
18.
Two apparently distinct, sub-parallel, paleo-subduction zonescan be recognized along the northern margin of the Tibetan Plateau:the North Qilian Suture Zone (oceanic-type) with ophioliticmélanges and high-pressure eclogites and blueschistsin the north, and the North Qaidam Belt (continental-type) inthe south, an ultrahigh-pressure (UHP) metamorphic terrane comprisingpelitic and granitic gneisses, eclogites and garnet peridotites.Eclogites from both belts have protoliths broadly similar tomid-ocean ridge basalts (MORB) or oceanic island basalts (OIB)in composition with overlapping metamorphic ages (480–440Ma, with weighted mean ages of 464 ± 6 Ma for North Qilianand 457 ± 7 Ma for North Qaidam), determined by zirconU–Pb sensitive high-resolution ion microprobe dating.Coesite-bearing zircon grains in pelitic gneisses from the NorthQaidam UHP Belt yield a peak metamorphic age of 423 ±6 Ma, 40 Myr younger than the age of eclogite formation, anda retrograde age of 403 ± 9 Ma. These data, combinedwith regional relationships, allow us to infer that these twoparallel belts may represent an evolutionary sequence from oceanicsubduction to continental collision, and continental underthrusting,to final exhumation. The Qilian–Qaidam Craton was probablya fragment of the Rodinia supercontinent with a passive marginand extended oceanic lithosphere in the north, which was subductedbeneath the North China Craton to depths >100 km at c. 423Ma and exhumed at c. 403 Ma (zircon rim ages in pelitic gneiss). KEY WORDS: HP and UHP rocks; subduction belts; zircon SHRIMP ages; Northern Tibetan Plateau  相似文献   
19.
吐拉苏火山盆地中与金成矿有关的热液富含K^+、Na^+、F、SO4^2-和N2、O2等,是一种主要来源于岩浆.火山的热液,有大气水参于的次生热液.平均均一温度96~158℃,平均盐度0.26%~1.08%,热液活动深度0.26~0.67km,具有低温、低盐度、在地壳浅部活动的基本特征.热液活动生成围绕金矿体由内向外环状展布的黄英岩化、高级泥化、泥化和绿泥石碳酸盐化4个围岩蚀变带.与其有关的金成矿期分为原生沉积富集和次生热液交代蚀变2期,后者包括毒砂黄铁矿化、面状硅化、脉状硅化和绿泥石碳酸盐化4个成矿阶段.金富集成矿主要与黄英岩化蚀变带和面状硅化、脉状硅化2个成矿阶段密切相关.  相似文献   
20.
青藏高原东缘缅萨洼金矿成矿流体地质地球化学特征   总被引:3,自引:0,他引:3  
缅萨洼金矿位于中国中轴构造带的中南段,青藏高原的东缘,赋存于金河-箐河断裂带次级断裂羊坪子韧性剪切带中本文根据对该矿床硫化物流体包裹体的氦氩同位素、硫化物的硫同位素以及与硫化物共生的石英的流体包裹体特征、成分以及氢氧同位素组成的测定,讨论了缅萨洼金矿的成矿流体来源及其矿床成因。结果显示,该矿床硫化物流体包裹体中的3He/4He变化较小,为0.69-0.82,显示了地幔流体参与成矿作用的可能性。而4He的含量变化范围较大,一般在2.19-10.62×10-6cm3STP/g(方铅矿除外)与3He/4He相比,40Ar/36Ar的比值则变化较小,一般为251-509。而硫化物的δ34S同位素变化范围在-1.8-2.2‰,平均值为0.5‰,说明硫的地幔来源。与硫化物共生的石英的流体包裹体的类型主要有富液相的盐水溶液包裹体、富气相的盐水溶液包裹体、三相CO2包裹体、纯液相CO2包裹体以及有机流体包裹体。成矿流体的氢氧同位素则显示成矿流体来源于岩浆水(或地幔流体)与大气降水的混合流体,本文认为,缅萨洼金矿的成矿流体为地幔流体与大气降水的混合流体,是渐新世印度大陆与亚洲大陆碰撞之后,该地区大规模走滑与剪切作用过程中,局部伸展作用的产物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号