首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1020篇
  免费   178篇
  国内免费   378篇
测绘学   3篇
大气科学   4篇
地球物理   320篇
地质学   992篇
海洋学   62篇
天文学   1篇
综合类   18篇
自然地理   176篇
  2024年   6篇
  2023年   21篇
  2022年   47篇
  2021年   63篇
  2020年   57篇
  2019年   55篇
  2018年   67篇
  2017年   60篇
  2016年   49篇
  2015年   55篇
  2014年   39篇
  2013年   58篇
  2012年   75篇
  2011年   40篇
  2010年   45篇
  2009年   63篇
  2008年   52篇
  2007年   79篇
  2006年   69篇
  2005年   52篇
  2004年   71篇
  2003年   57篇
  2002年   47篇
  2001年   38篇
  2000年   38篇
  1999年   33篇
  1998年   30篇
  1997年   35篇
  1996年   35篇
  1995年   24篇
  1994年   23篇
  1993年   25篇
  1992年   18篇
  1991年   10篇
  1990年   9篇
  1989年   9篇
  1988年   15篇
  1987年   1篇
  1986年   5篇
  1983年   1篇
排序方式: 共有1576条查询结果,搜索用时 365 毫秒
871.
IntroductionAwidevarietyofexperimentalandobservationaldatashowthatshallowewthquakesaretheresultofeitherbrittleshearfailureduringcreationofafaultorstick-slipfrictiononapreexisting-fault.Themotionstyleofstick-slipalongafaultisbasicallychangedtocreeping...  相似文献   
872.
北秦岭晋宁期主要地质事件及其构造背景探讨   总被引:14,自引:0,他引:14  
北秦岭主要发育元古宙构造岩石地层单位,包括古元古代秦岭杂岩、中元古代峡河岩群、宽坪岩群和武关岩群、中元古代晚期松树沟蛇绿岩构造岩片、新元古代丹凤岩群和二郎坪岩群的下部地层单位等。北秦岭广泛存在晋宁期的强烈构造-岩浆-变质地质事件,且是新元古代主体形成的古老造山带。晋宁期的地质事件可能并不代表扬子地块和华北地块之间的直接碰撞拼合,而是具扬子地块基底特征的“中秦岭微地块 与北秦岭微地块或华北地块之间的俯冲碰撞拼台 震旦纪之后又逐渐开始发生大陆裂解,进入显生宙的构造演化阶段。新元古代晋宁期(1000-800Ma)发生的主要地质事件和有限的俯冲-碰撞拼台及震旦纪之后又逐渐开始发生裂解与国外一些地质学家提出的新元古代时期Rodinia超大陆的形成和700~570 Ma期间Rodinia超大陆的裂解不谋而台  相似文献   
873.
塔克札勒蛇绿混杂岩带的变质作用 ,具大洋水热变质、俯冲变质和区域低温动力变质作用的特征 ,其中以大洋水热变质作用为主。中志留世末洋盆扩张阶段 ,形成葡萄石、绿纤石相→低绿片岩相→角闪岩相的递增变质特征 ;早石炭世初洋壳向陆壳之下俯冲 ,俯冲变质作用不显著 ,仅见超镁铁岩具叶蛇纹石、纤维蛇纹石及绢石蚀变矿物 ;早石炭世中期塔克札勒有限洋盆开始粘连闭合 ,于晚石炭世早期褶皱造山 ,使蛇绿混杂岩带产生角闪岩相→高绿片岩相→低绿片岩相的退变质特征 ,使蛇绿岩带在辉长岩中由棕色角闪石退变为透闪石、阳起石和绿泥石、绢云母及绿帘石等变质矿物 ,是区域低温动力变质作用的产物 ,属低绿片岩相  相似文献   
874.
875.
Signature of remnant slabs in the North Pacific from P-wave tomography   总被引:1,自引:0,他引:1  
A 3-D ray-tracing technique was used in a global tomographic inversion in order to obtain tomographic images of the North Pacific. The data reported by the Geophysical Survey of Russia (1955–1997) were used together with the catalogues of the International Seismological Center (1964–1991) and the US Geological Survey National Earthquake Information Center (1991–1998), and the recompiled catalogue was reprocessed. The final data set, used for following the inversion, contained 523 430 summary ray paths. The whole of the Earth's mantle was parametrized by cells of 2° × 2° and 19 layers. The large and sparse system of observation equations was solved using an iterative LSQR algorithm.
A subhorizontal high-velocity anomaly is revealed just above the 660 km discontinuity beneath the Aleutian subduction zone. This high-velocity feature is observed at latitudes of up to ~70°N and is interpreted as a remnant of the subducted Kula plate, which disappeared through ridge subduction at about 48 Ma. A further positive velocity perturbation feature can be identified beneath the Chukotka peninsula and Okhotsk Sea, extending from ~300 to ~660 km depth and then either extending further down to ~800 km (Chukotka) or deflecting along the 660 km discontinuity (Okhotsk Sea). This high-velocity anomaly is interpreted as a remnant slab of the Okhotsk plate accreted to Siberia at ~55 Ma.  相似文献   
876.
THE CENTRAL PAMIR—AN ALPINE COLLISION ZONE  相似文献   
877.
he 2500km long Indus\|Tsangpo Suture has been recognized as one of the best examples of continent to continent collisional Suture Zone. It has come into existence as a result of subduction followed by continental collision (55~60Ma) between Indian (Sinha, 1989, 1997; Sinha et al., 1999) and Eurasian plates. While considering the recent palaeogeographic reconstruction of Pangea during late Palaeozoic it appears that a southern belt of Asian microcontinents stretching from Iran and Afghanistan through southern Tibet to western Thailand, Malaysia and Sumatra, comprise several continental blocks and numerous fragments that have coalesced since the Mid\|Palaeozoic along with the closure of Tethys. The origin, migration, assembly and timing of accretion of all these blocks to their present geotectonic position is not well known and there is no Permo—Triassic crust left in the present day Indian Ocean. The oldest ocean crust adjacent to the west African and Antarctic margin is of early or middle Cretaceous age (approximately 140~100Ma) (Searle, 1991). The Karakoram\|Hindukush microplate in the west and the Qiangtang\|Lhasa block in the central and eastern segment of South Asia margin are among those blocks already welded with Asian plates around 120~130Ma ago, before the collision of India (55~60Ma) with the collage of plates forming Peri\|Gondwanian microcontinents. But the reconstruction of palaeogeographic configuration remain incomplete due to paucity of authentic geologic information available from Karakoram, Pamir and Western Tibet. Prior to our discovery no early Permian plant remains and palynomorphs were ever reported from Karakoram terrane. Our discovery of Early Permian remains and late Asselian (about 280~275Ma) palynomorphs provides crucial clue regarding the palaeogeographic reconstruction of the Karakoram\|Himalayan block in the Permian time.  相似文献   
878.
The Cretaceous accretionary complexes of the Idonnappu Zone in the Urakawa area are divided into five lithological units, four of which contain greenstone bodies. The Lower Cretaceous Naizawa Complex consists of two lithologic units. The Basaltic Unit (B‐Unit) is a large‐scale tectonic slab of greenstone, consisting of depleted tholeiite similar to that of the Lower Sorachi Ophiolite (basal forearc basin ophiolite) in the Sorachi‐Yezo Belt. The Mixed Unit of Naizawa Complex (MN‐Unit) contains oceanic island‐type alkaline greenstones which occur as slab‐like bodies and faulted blocks with tectonically dismembered trench‐fill sediments. Repeated alternations of the two units in the Naizawa Complex may have been formed by the collision of seamounts with forearc ophiolitic body (Lower Sorachi Ophiolite) in the trench. The Upper Cretaceous Horobetsugawa Complex structurally underlies the Naizawa Complex in its original configuration, and it also contains greenstone bodies. Greenstones in the MH‐Unit occur as blocks and sedimentary clasts in a clastic matrix, and exhibit depleted tholeiite and oceanic‐island alkaline basalt/tholeiite chemistry. This unit is interpreted as submarine slide and debris flow deposits. Greenstones in the PT‐Unit occur at the base of several chert‐clastic successions. Most of the greenstones are severely sheared and show normal‐type mid‐ocean ridge basalt composition. The PT‐Unit greenstones are considered to have been derived from abyssal basement peeled off during accretion. The different accretion mechanism of the greenstones in the Naizawa and Horobetsugawa complexes reflects temporal changes in subduction zone conditions. Seamount accretion and tectonic erosion were dominant in the Early Cretaceous, due to highly oblique subduction of the old oceanic crust and minimal sediment supply. Whereas, thick sediments with minor mid‐ocean ridge basalt and olistostrome accreted in the Late Cretaceous, due to near‐orthogonal subduction of young oceanic crust with voluminous sediment supply.  相似文献   
879.
喜马拉雅及南藏的地壳俯冲带——地震学证据   总被引:41,自引:11,他引:30  
地质学的证据表明 ,在喜马拉雅的冲断层带MCT和MBT处有大规模的地壳缩短 ;在雅鲁藏布缝合带附近也观测到冲断层 .但是 ,迄今还不知道这些冲断层向下俯冲多深 .我们根据地震学的证据 ,认为喜马拉雅及南藏的冲断层向下延伸至 80- 1 0 0km ,然后停止 .在MCT、MBT以及雅鲁藏布缝合带下面的冲断层与喜马拉雅以及南藏的多次地壳俯冲有密切关系 .这个现象为印度-欧亚的碰撞过程设定一个十分重要的框架 .该地区的地壳俯冲有一定深度 ,由于入侵的地壳太轻 ,使俯冲不能更深 ;此时由于印度板块的继续向北推进 ,在原俯冲带后方 ,出现另一个新的地壳俯冲带 .喜马拉雅与南藏的多重地壳俯冲与该地区地质活动的多幂性相吻合 .首先 ,在雅鲁藏布缝合带产生地壳俯冲 ,在到达 80- 1 0 0km处停止 .然后 ,在雅鲁藏布以南的MCT和MBT相继产生新的地壳俯冲 .它们也在 80- 1 0 0km的深处停止 .除了喜马拉雅和雅鲁藏布向北倾斜的地震带外 ,另外还观测到一个自地表从唐古拉山向南缓慢倾斜并到达雅鲁藏布地壳底部的地震带 .它可以解释为在唐古拉山附近的地壳向北仰冲 .喜马拉雅及南藏的多重地壳...  相似文献   
880.
Large amounts of fluid, bound up in the hydrated upper layers of the ocean crust, are consumed at convergent margins and released in subduction zones through devolatilization. The liberated fluids may play an integral role in subduction zone processes, including the generation of arc-magmas. However, exhumed subduction zone rocks often record little evidence of large-scale fluid flow, especially at deeper levels within the subduction zone. Basaltic pillows from the high-pressure Corsican and Zermatt-Saas ophiolites show a range of δ18O values that overall reflect seafloor alteration prior to subduction. However, comparison between the δ18O values of the cores and rims of the pillows suggests that the δ18O values of the pillow rims at least have been modified during subduction and high-pressure metamorphism. Pillows that have not undergone high-pressure metamorphism generally have rims with higher δ18O values than their cores, whereas the converse is the case in pillows that have undergone high-pressure metamorphism. This reversal in the core to rim oxygen isotope relationship between unmetamorphosed and metamorphosed pillows is strong evidence for fluid–rock interaction occurring during subduction and high-pressure metamorphism. However, the preservation of different δ18O values in the cores and rims of individual pillows and within and between different pillows suggests that fluid flow within the subduction zone was strongly channelled. Resetting of the δ18O values in the pillow rims was probably due to fluid-hosted diffusion that occurred over relatively short time-scales (<1 Myr).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号