首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   50篇
  国内免费   76篇
测绘学   5篇
大气科学   1篇
地球物理   112篇
地质学   193篇
海洋学   18篇
综合类   2篇
自然地理   17篇
  2023年   1篇
  2022年   14篇
  2021年   13篇
  2020年   15篇
  2019年   15篇
  2018年   21篇
  2017年   4篇
  2016年   9篇
  2015年   11篇
  2014年   11篇
  2013年   15篇
  2012年   29篇
  2011年   12篇
  2010年   11篇
  2009年   18篇
  2008年   19篇
  2007年   21篇
  2006年   14篇
  2005年   18篇
  2004年   14篇
  2003年   10篇
  2002年   4篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   5篇
  1992年   3篇
  1990年   2篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1954年   1篇
排序方式: 共有348条查询结果,搜索用时 968 毫秒
181.
We conducted a seismic tomographic analysis to estimate the crustal structure beneath the Shikoku and Chugoku regions in Japan. The Philippine Sea slab (PHS slab) subducts continuously in a SE–NW direction beneath this region, and the crustal structure is complex. Furthermore, the Median Tectonic Line (MTL), one of the longest and most active arc-parallel fault systems in Japan (hereafter, the MTL active fault system), is located in this area, and the right-lateral strike–slip movement of this fault system is related to the oblique subduction of the PHS slab. The MTL active fault system has ruptured repeatedly during the last 10 000 years, and has high seismic potential. Our tomographic analysis clarified the heterogeneous crustal structure along the MTL active fault system. This fault system in Shikoku can be divided into two segments, an east segment and a west segment, on the basis of the velocity structure. This segmentation model is consistent with other such models that have been determined from geological and geomorphological data such as fault geometry, slip rate, and faulting history. This consistency suggests that the surface characteristics of the MTL active fault system are related to structural properties of the crust. In particular, a prominent low-velocity (low-V) zone is present in the lower crust beneath the east segment. Our tomographic images show that the lower crust structure beneath the east segment is obviously different from that of the other segment. Furthermore, this low-V zone may indicate the presence of fluid, possibly related to dehydration of the PHS slab. As the presence of fluid in the lower crust affects the activity of the fault, stress accumulation and the fault failure mechanism may differ between the two segments of the MTL active fault system.  相似文献   
182.
新疆北部的富镁火成岩   总被引:7,自引:4,他引:7  
本文重点讨论的富镁安山岩(MAs)是指 SiO_2>53%,Mg~#≥55的安山岩,也包括富镁英安岩和富镁闪长岩。阿尔泰南的富锾安山岩形成于中泥盆世,东、西天山和阿拉套山的富镁安山岩形成于石炭纪。本区富镁安山岩 SiO_2 53%~65%,TiO_2含量低于1%(0.21%~1.08%),平均0.72%;MgO 平均5.90%,与国外玻安岩平均值相比,Mg 含量较低,Ti、K、Na 含量较高。稀土元素总合量低(<100×10~(-6),范围15~95×10~(-6)),相对富重稀土(La/Yb)_N0.98~6.4,多数在4±;Eu 弱亏损到无亏损(Eu/Eu~*0.65~1.15)。相容微量元素 Cr、Ni 含量高,分别为72×10~(-6)~790×10~(-6)和29×10~(-6)~276×10~(-6);高场强元素 Nb、Ta、Ti 明显亏损;相对富集流体中富集的大离子亲石元素 Rb、K、Pb;Y 含量较高(>15×10~(-6));Sr/Y 比值较低(4.4~6.2)。(~(143)Nd/~(144)Nd)_i 值变化范围较大0.51221~0.51255,ε_(Nd)(t) 0.28- 7.2,Nd 模式年龄 t_(DM)485~1220Ma;(~(87)Sr/~(86)Sr)_i 值变化范围较大0.7029~0.7065,在ε_(Nd)(t)-(~(87)Sr/~(86)Sr)_i 图解中位于第一象限。上述特点表明,本区富镁安山岩源区为复合源,包括有蚀变洋壳、弧前增生棱柱的不成熟、新生地壳物质及地幔楔橄榄岩。成岩作用具复合性,既有俯冲洋壳板片的部分熔融,又有俯冲板片熔体对地幔楔橄榄岩的熔体交代作用。形成于特殊构造环境:高地热梯度和富挥发分;导致弧前增生棱柱俯冲的俯冲剥蚀作用;由俯冲板片撕裂、断离所形成的软流圈窗或洋脊俯冲。  相似文献   
183.
长白山天池火山地震活动机理研究   总被引:2,自引:0,他引:2  
对1999年以来长白山火山观测站记录到的火山地震活动进行了研究,发现在西北太平洋5.0级以上中深源地震发生前后,均有火山地震活动发生变化。我们统计发现有以下三种情况:第一种是深源地震发生后火山地震随之增强;第二种是火山震群活动结束后发生中深源地震;第三种是深源地震前后火山地震活动频繁,在火山地震活动较少时发生中深源地震。本文通过对近年来长白山火山地震活动与西北太平洋俯冲板块的中、深源地震关系以及火山玄武岩地幔性质和长白山地热活动等资料并参考前人研究成果,建立了长白山地幔柱模型,对长白山火山地震活动机制进行了初步探讨。  相似文献   
184.
Neotethyan suprasubduction zone ophiolites represent anomalous oceanic crust developed in older host basins during trench rollback cycles and later entrapped in orogenic belts as a result first of trench-passive margin and then continent–continent collisions. The Middle Jurassic Mirdita zone ophiolites in northern Albania constitute a critical transition between the dominantly mid-ocean ridge basalt (MORB)-related Early Jurassic Alpine–Apennine ophiolites in the west and supra-subduction zone (SSZ)-generated Cretaceous Eastern Mediterranean ophiolites in the east. The previously recognized Western- and Eastern-type ophiolites in the Mirdita zone display significant differences in their internal structure and pseudostratigraphy, but their geochemical affinities are more gradational in contrast to the earlier claims that these ophiolites may have formed in different tectonic settings at different times. Crosscutting relations of dike intrusions in the Eastern-type ophiolites indicate changes in the chemistry of magmatic plumbing systems from basaltic to andesitic, dacitic, rhyodacitic, and boninitic compositions through time and from west to east. The chemostratigraphy of the extrusive sequence in the Western-type ophiolites shows that the MORB-like tholeiitic rocks display a significant decrease in their TiO2 contents and Zr concentrations stratigraphically upward, although their εNd(T) values (+ 7.3 to + 6.9) show minor variation. The basaltic andesites in the upper 100 m of the Western extrusive sequence have island arc tholeiite (IAT)-like chemical characteristics (low-Ti, lower HFSE and HREE distribution, significant LREE depletion and higher Co, Ni, and Cr contents) that signify increased subduction influence in magma/melt evolution. The Eastern-type extrusive rocks range in composition from basaltic andesite to andesite, dacite and rhyodacite stratigraphically upward mimicking the temporal changes in the sheeted dikes, and they display constant Zr ( 50 ppm) but significantly varying Cr contents. The TiO2 contents of their pyroxenes are < 0.3 wt.%, and their εNd(T) values decrease from + 6.5 in the lower parts to  + 3.1 in the uppermost section of the sequence. Farther east in the extrusive sequence the youngest boninitic lavas and dikes have εNd(T) values between − 1.4 and − 4.0. These chemical variations through time point to a mantle source increasingly contaminated by subduction-derived aqueous fluids and sediments, which were incorporated into the melt column beneath an extending protoarc–forearc region. Slab retreat and sinking played a major role in establishing asthenospheric upwelling and corner flow beneath the forearc mantle that in turn facilitated shallow partial melting of highly depleted harzburgitic peridotites, producing boninitic magmas. This chemical progression in the Mirdita zone ophiolite volcanism is similar to the temporal variations in magma chemistry documented from very young intraoceanic arcs built on recently generated backarc crust (i.e., South Sandwich arc). The Western and Eastern-type ophiolites in the Mirdita zone are therefore all subduction-related with the subduction zone influence in the lavas increasing stratigraphically upward as well as eastwards, suggesting a west-dipping slab geometry. The Mirdita zone and the Western Hellenic ophiolites in the Balkans were produced within a marginal basin that had evolved between the Apulian and Pelagonian microcontinents, and were subsequently emplaced onto their passive margins diachronously through different collisional processes.  相似文献   
185.
Mesozoic magmatism is widespread in the eastern South China Block and has a close genetic relationship with intensive polymetallic mineralization. However, proper tectonic driver remains elusive to reconcile the broad intracontinental magmatic province. This study presents integrated zircon U-Pb dating, Hf isotopes and whole-rock geochemistry of the Xiwan dioritic porphyry in the NE Jiangxi ophiolitic mélange. Zircon U-Pb dating by SIMS and LA-ICP-MS methods yielded an emplacement age of ~160 Ma for the Xiwan diorite, confirming its inclusion into the Mesozoic magmatic province in SE China, instead of a component of the Neoproterozoic ophiolitic mélange genetically. The dioritic rocks have low Si02(58.08 wt%-59.15 wt%), and high Na_2 O(5.00 wt%-5.21 wt%) and MgO(4.60 wt%-5.24 wt%) contents with low TFeO/MgO ratios(1.02-1.09). They show an adakitic geochemical affinity but exhibit relatively low Sr/Y ratios(24.8-31.1) and high Y contents(14.6-18.3 ppm) compared to the Dexing adakitic porphyries. In addition, the Xiwan diorites have moderately evolved zircon Hf isotopic compositions(ε_(Hf)(t)=-6.1--0.1; T_(DM2)=1597-1219 Ma). These elemental and isotopic signatures suggest that the Xiwan diorite formed through partial melting of a remnant arc lower crust(i.e., early Neoproterozoic mafic arc-related rocks) in response to the underplating of coeval mafic magmas. In conjunction with the temporal-spatial distribution and complex geochemical characteristics of the Mesozoic magmatism, our case study attests to the feasibility of a flat-slab subduction model in developing the broad intracontinental magmatic province in SE China. The flat-slab delamination tends to trigger an asthenospheric upwelling and thus results in extensive partial melting of the overlying lithospheric mantle and lower crustal materials in an extensional setting during the Mesozoic.  相似文献   
186.
平板俯冲是地球上一种独特的俯冲模式,主要发生在南美洲地区,与该地区的地震、火山等构造地质现象有着密切联系。平板俯冲的形成机制和影响因素仍然需要进一步地研究。文章通过数值模拟的方法,研究了俯冲板块的动力学性质对于平俯冲板片形态的影响。模拟实验结果表明,俯冲板块的厚度和密度差(与地幔)对平板俯冲的形成有着决定性的影响。合适的俯冲板块厚度(70 km 左右)有利于在俯冲过程中形成平板片。厚度较大的板片难以发生弯曲,阻碍了平板片的形成。俯冲板块与地幔的密度差越小,越容易形成平板俯冲,平板片的长度也越长。俯冲板片的密度差太大也不利于形成平板片。此外,高粘度的俯冲板块容易形成平板俯冲,俯冲板块的粘度与形成的平板片的长度也成正比。研究还发现,平板俯冲的形成伴随着海沟后撤速率的减小。参考模型重现了智利中部平板俯冲的形态,为研究该地区的平板俯冲机制提供了新认识。  相似文献   
187.
Here we present new data on the major and trace element compositions of silicate and oxide minerals from mantle xenoliths brought to the surface by the Carolina kimberlite, Pimenta Bueno Kimberlitic Field, which is located on the southwestern border of the Amazonian Craton. We also present Sr-Nd isotopic data of garnet xenocrysts and whole-rocks from the Carolina kimberlite. Mantle xenoliths are mainly clinopyroxenites and garnetites. Some of the clinopyroxenites were classified as GPP–PP–PKP (garnet-phlogopite peridotite, phlogopite-peridotite, phlogopite-K-richterite peridotite) suites, and two clinopyroxenites (eclogites) and two garnetites are relicts of an ancient subducted slab. Temperature and pressure estimates yield 855–1102 °C and 3.6–7.0 GPa, respectively. Clinopyroxenes are enriched in light rare earth elements (LREE) (LaN/YbN = 5–62; CeN/SmN = 1–3; where N = primitive mantle normalized values), they have high Ca/Al ratios (10–410), low to medium Ti/Eu ratios (742–2840), and low Zr/Hf ratios (13–26), which suggest they were formed by metasomatic reactions with CO2-rich silicate melts. Phlogopite with high TiO2 (>2.0 wt.%), Al2O3 (>12.0 wt.%), and FeOt (5.0–13.0 wt.%) resemble those found in the groundmass of kimberlites, lamproites and lamprophyres. Conversely, phlogopite with low TiO2 (<1.0 wt.%) and lower Al2O3 (<12.0 wt.%) are similar to those present in GPP-PP-PKP, and in MARID (mica-amphibole-rutile-ilmenite-diopside) and PIC (phlogopite-ilmenite-clinopyorxene) xenoliths. The GPP-PP-PKP suite of xenoliths, together with the clinopyroxene and phlogopite major and trace element signatures suggests that an intense proto-kimberlite melt metasomatism occurred in the deep cratonic lithosphere beneath the Amazonian Craton. The Sr-Nd isotopic ratios of pyrope xenocrysts (G3, G9 and G11) from the Carolina kimberlite are characterized by high 143Nd/144Nd (0.51287–0.51371) and εNd (+4.55 to +20.85) accompanied with enriched 87Sr/86Sr (0.70405–0.71098). These results suggest interaction with a proto-kimberlite melt compositionally similar with worldwide kimberlites. Based on Sr-Nd whole-rock compositions, the Carolina kimberlite has affinity with Group 1 kimberlites. The Sm-Nd isochron age calculated with selected eclogitic garnets yielded an age of 291.9 ± 5.4 Ma (2 σ), which represents the cooling age after the proto-kimberlite melt metasomatism. Therefore, we propose that the lithospheric mantle beneath the Amazonian Craton records the Paleozoic subduction with the attachment of an eclogitic slab into the cratonic mantle (garnetites and eclogites); with a later metasomatic event caused by proto-kimberlite melts shortly before the Carolina kimberlite erupted.  相似文献   
188.
中基性岩墙群的形成及产出对研究区域大地构造背景和岩浆演化过程具有重要的地质意义.对西准噶尔地区的夏尔蒲中基性岩墙群和小西湖中基性岩墙群中样品(共18件)进行了岩石学、锆石U-Pb年代学、岩石地球化学和同位素地球化学等方面的研究.结果显示,夏尔蒲和小西湖岩墙群岩石类型以闪长玢岩为主,含少量辉绿岩.LA-ICP-MS锆石U-Pb年代学表明夏尔蒲岩墙群的侵位年龄为308.6±5.5 Ma.岩石均具有高Mg#(>40)、MgO(>3%)、Al2O3(>16%);全岩A/CNK值多在0.9左右,A/NK>2,属准铝质岩石;岩石整体属钙碱性玄武岩/安山岩系列.岩石具有较低的稀土总量(多在40×10-6~60×10-6),具轻稀土富集、重稀土亏损及Eu正异常等特征((La/Yb)N为3.03~11.32,δEu=1.00~1.20);明显富集大离子亲石元素K、Rb、Ba、Sr,亏损高场强元素Nb、Ta、Ti、Th,呈现了俯冲消减带岩石的地球化学特征.同时,岩石具有较高的Sr(均大于500 ×10-6)、较低的Y(大多小于10×10-6)和Yb(多在1×10-6左右)含量,较高的Sr/Y比值(36~95),大多数样品具有富镁埃达克质岩石的组成特征.岩石具有亏损的Sr-Nd同位素组成((87Sr/86Sr)i=0.703 58~0.703 80,εNd(t)=5.76~6.34).元素及同位素地球化学资料表明岩浆源区中既有亏损地幔组分的参与,又有俯冲消减作用的印迹.结合区域地质特征及前人研究成果,结果表明晚石炭世时西准噶尔地区已进入后碰撞阶段.由于俯冲残留大洋板片部分熔融,产生的熔体在与亏损地幔一定程度相互作用后,经单斜辉石的分离结晶而形成了夏尔蒲和小西湖岩墙群中富镁埃达克质岩石;而来源于亏损地幔的岩浆同样经单斜辉石的分离结晶后,形成了夏尔蒲岩墙群中的辉绿岩和小西湖岩墙群中的角闪闪长玢岩.大规模中基性岩墙群的产出则进一步表明晚石炭世时西准噶尔地区处于后碰撞的伸展拉张构造背景之下.   相似文献   
189.
The M 7.0 Haiti earthquake of 2010 in the Greater Antilles is a reminder that the northeastern Caribbean is at a high risk for seismic and tsunami hazards. The Greater Antilles consist of the Hispaniola microplate to the west and Puerto Rico–Virgin Islands to the east and are situated between two subduction zones with the Puerto Rico Trench to the north and the Muertos Trough to the south. Although there is no active volcanism on Puerto Rico, earthquake depths and previous seismic tomography results imply that the slabs of Caribbean and North American Plates exist at depth. However, how far the east Muertos Trough subduction of the North Caribbean Plate has extended has not been fully addressed. In addition, the Puerto Rico–Virgin Islands are bounded by extensional regimes to both the west (Mona Rift) and east (Anegada Passage). The cause of the extension is still under debate. In this paper, we use new 3D seismic tomography and gravity data to carry out an integrated study of the geometry of the subducting slabs of the North American and North Caribbean Plates in the Puerto Rico–Virgin Islands area. The results indicate that both slabs have an increase of dip westward, which is strongly controlled by the subduction rollback of the North American Plate. These variations affected the tectonic evolution of the Puerto Rico–Virgin Islands. Thus, the results of this research advance our understanding of the kinematic evolution of the Puerto Rico–Virgin Islands and associated natural hazards. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
190.
New radiolarian ages show that the island arc-related Acoje block of the Zambales Ophiolite Complex is possibly of Late Jurassic to Early Cretaceous age.Radiometric dating of its plutonic and volcanichypabyssal rocks yielded middle Eocene ages.On the other hand,the paleontological dating of the sedimentary carapace of the transitional mid-ocean ridge-island arc affiliated Coto block of the ophiolite complex,together with isotopic age datings of its dikes and mafic cumulate rocks,also yielded Eocene ages.This offers the possibility that the Zambales Ophiolite Complex could have:(1)evolved from a Mesozoic arc(Acoje block)that split to form a Cenozoic back-arc basin(Coto block),(2)through faulting,structurally juxtaposed a Mesozoic oceanic crust with a younger Cenozoic lithospheric fragment or(3)through the interplay of slab rollback,slab break-off and,at a later time,collision with a microcontinent fragment,caused the formation of an island arc-related ophiolite block(Acoje)that migrated trench-ward resulting into the generation of a back-arc basin(Coto block)with a limited subduction signature.This Meso-Cenozoic ophiolite complex is compared with the other oceanic lithosphere fragments along the western seaboard of the Philippines in the context of their evolution in terms of their recognized environments of generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号