首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   50篇
  国内免费   76篇
测绘学   5篇
大气科学   1篇
地球物理   112篇
地质学   193篇
海洋学   18篇
综合类   2篇
自然地理   17篇
  2023年   1篇
  2022年   14篇
  2021年   13篇
  2020年   15篇
  2019年   15篇
  2018年   21篇
  2017年   4篇
  2016年   9篇
  2015年   11篇
  2014年   11篇
  2013年   15篇
  2012年   29篇
  2011年   12篇
  2010年   11篇
  2009年   18篇
  2008年   19篇
  2007年   21篇
  2006年   14篇
  2005年   18篇
  2004年   14篇
  2003年   10篇
  2002年   4篇
  2001年   6篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   5篇
  1992年   3篇
  1990年   2篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1954年   1篇
排序方式: 共有348条查询结果,搜索用时 671 毫秒
111.
采用欧拉梁横向自由振动理论,发展了一种求解浅埋地下结构顶板频率和振型的方法。鉴于地下结构顶板频率求解问题的复杂性,首先将该问题假定为平面应变问题求解,推导出浅埋地下结构项板梁的自由振动方程;然后根据顶板梁的边界条件,得到了顶板梁的频率方程,从而得出了顶板梁的频率和振型;进一步得出了墙体转动刚度对顶板频率影响的规律,即转动刚度对顶板低频影响较小,对高频影响较大。还综合考虑土体刚度随埋深的变化和由于土体成拱引起的土体附加质量的变化,研究了结构顶板频率随埋深的变化。这些结果可以为地下结构的动力计算提供参考。  相似文献   
112.
Western Yunnan is located within a gigantic Tethys orogenic zone between Gondwana and Laurasia. Magmatic activity records of the associated Wilson orogenic cycle show that the causes of plate spreading in the region might have been related to sub-mantle plume. Tectonics, geophysics, sedimentary strata, tectonic evolution of the lithosphere and other research results indicate that there is geological evidence for mantle plume magmatic activities in West Yunnan. Tomography also supports the idea that there is a subducting slab near the Red River fault and an upwelling mantle plume in West Yunnan. Here our research presents seismic evidence for upwelling mantle plume, which is a main cause leading to subducting slab in West Yunnan. The analysis is based on compressional-to-shear (P-to-S) converted seismic phases, recorded on seismograph stations in the Sichuan-Yunnan seismic network, and made a study on 410-km and 660-km discontinuities, as well as on three sections of CCP stacking.  相似文献   
113.
The Oligo-Miocene Somuncura province is the largest (55 000km2) back-arc mafic volcanic field in Patagonia, and one ofEarth's largest with no clear link to a hotspot or major extension.Major and trace element and Sr–Nd–Pb isotopic datasuggest involvement of a plume-like component in the mantlemagma source mixed with hydrous, but not high field strengthelement (HFSE)-depleted components, from a disintegrating subductingplate. Magmatism is attributed to mantle upwelling related todisturbances during plate reorganization, possibly at a timewhen the South America plate was nearly stationary over theunderlying mantle. Melting was enhanced by hydration of themantle during Paleogene subduction. Crustal contamination wasminimal in a refractory crust that had been extensively meltedin the Jurassic. Eruption began with low-volume intraplate alkalinemafic flows with depleted Nd–Sr isotopic signatures. Thesewere followed by voluminous 29–25 Ma tholeiitic maficflows with flat light and steep heavy rare earth element (REE)patterns, intraplate-like La/Ta ratios, arc-like Ba/La ratiosand enriched Sr–Nd isotopic signatures. Their source canbe explained by mixing EM1–Tristan da Cunha-like and depletedmantle components with subduction-related components. Post-plateau24–17 Ma alkaline flows with steep REE patterns, highincompatible element abundances, and depleted Sr–Nd isotopicsignatures mark the ebbing of the mantle upwelling. KEY WORDS: Somuncura plateau; slab interaction; Patagonia; large igneous province (LIP); plume-like upwelling  相似文献   
114.
Owing to the stochastic behavior of earthquakes and complex crustal structure, wave type and incident direction are uncertain when seismic waves arrive at a structure. In addition, because of the different types of the structures and terrains, the traveling wave effects have different influences on the dynamic response of the structures. For the tall concrete-faced rockfill dam (CFRD), it is not only built in the complex terrain such as river valley, but also its height has reached 300 m level, which puts forward higher requirements for the seismic safety of the anti-seepage system mainly comprising concrete face slabs, especially the accurate location of the weak area in seism. Considering the limitations of the traditional uniform vibration analysis method, we implemented an efficient dynamic interaction analysis between a tall CFRD and its foundation using a non-uniform wave input method with a viscous-spring artificial boundary and equivalent nodal loads. This method was then applied to investigate the dynamic stress distribution on the concrete face slabs for different seismic wave types and incident directions. The results indicate that dam-foundation interactions behave differently at different wave incident angles, and that the traveling wave effect becomes more evident in valley topography. Seismic wave type and incident direction dramatically influenced stress in the face slab, and the extreme stress values and distribution law will vary under oblique wave incidence. The influence of the incident direction on slab stress was particularly apparent when SH-waves arrived from the left bank. Specifically, the extreme stress values in the face slab increased with an increasing incident angle. Interestingly, the locations of the extreme stress values changed mainly along the axis of the dam, and did not exhibit large changes in height. The seismic safety of CFRDs is therefore lower at higher incident angles from an anti-seepage perspective. Therefore, it is necessary to consider both the seismic wave type and incident direction during seismic capacity evaluations of tall CFRDs.  相似文献   
115.
Mafic dike–granite associations are common in extensional tectonic settings and important and pivotal in reconstructing crust–mantle geodynamic processes. We report results of zircon U–Pb and hornblende 40Ar-39Ar ages and major-element and trace-element data for mafic dike–granite association from the northern West Junggar, in order to constrain their ages, petrogenesis, and geodynamic process. The mafic dike–granite association was emplaced in the early Devonian. The Xiemisitai monzogranites have high SiO2 contents and low MgO, Cr, and Ni concentrations, suggesting that they were mainly derived from crustal sources and were probably generated by partial melt of the juvenile mid-lower crust. The mafic dikes have low Mg# and Cr and Ni abundances, suggesting that they have experienced significant fractional crystallization. The Xiemisitai mafic dikes contain hornblende and biotite and display negative Nb–Ta–Ti anomalies, enrichment of LREEs and LILEs, and depletion of HREEs and HFSEs, consistent with an origin from a lithospheric mantle metasomatized by subducted slab-derived fluids. In addition, the Xiemisitai mafic dikes are plotted within melting trends with little to no garnet (Cpx: Grt = 6:1) in their source. The La/Yb versus Tb/Yb plot also indicates the presence of less than 1% residual garnet in the source region for the Xiemisitai mafic dikes. Therefore, it can be inferred that the Xiemisitai mafic dikes were generated at a correspondingly shallow depth, mostly within the spinel stability field. The Xiemisitai mafic dikes were most probably generated by the partial melting of the metasomatized lithospheric mantle at relatively shallow depths (<80 km). The Xiemisitai mafic dike–granite association could have been triggered by asthenospheric upwelling as a result of the rollback of the subducted Irtysh–Zaysan oceanic lithosphere.  相似文献   
116.
ABSTRACT

Southeastern China is characterized by an extensive Late Mesozoic (Yanshanian) tectono-magmatic-metallogenic event. Although Late Cretaceous volcanism gradually weakened during the epilogue of the Yanshanian event, its petrogenesis and geodynamic processes remain unclear. In this study, we present new zircon U–Pb–Hf isotopic, whole-rock elemental, and Sr–Nd isotopic compositions data, for volcanic rocks from the Zhaixia Formation of the Shimaoshan Group in Fujian Province. The lower member of the Zhaixia Formation consists of basalts and rhyolites, and the upper member is only rhyolites. These volcanic rocks erupted in the early stage of Late Cretaceous, with basalts erupting earlier (ca. 99–98 Ma) than rhyolites (ca. 98–94 Ma). These basalts record high-K calc-alkaline to shoshonitic, light rare earth element (LREE)- and LILE-enrichment, high field strength element (HFSE)depletion with negligible Eu anomalies, and uniform whole-rock εNd(t) (–3 to –6) and zircon εHf(t) (–3.3 to –14.1) values. The overlying rhyolites record peraluminous and high-K calc-alkaline characteristics, LREE- and LILE-enrichment with negative Eu anomalies, and Nb–Ta depletion. The whole-rock εNd(t) and zircon εHf(t) values of these rhyolites both increase from the lower member (εNd(t), –1.5 to –4.7; εHf(t), –5.1 to –16.1) to the upper member (εNd(t), –0.5 to 0.1; εHf(t), –0.3 to –4.3). The features imply that these basalts were derived from the partial melting of the enriched lithospheric mantle and the overlying rhyolites from the melting of the crustal components, respectively. Data from the rhyolites in the upper member indicate that more juvenile, Nd–Hf isotopically depleted materials were injected into their source. During the Late Cretaceous, the new, fast rollback of the subducting slab triggered lithospheric extension and asthenospheric upwelling beneath the coastal regions, which induced the melting of lithospheric mantle and crustal components. As continued, the new round of basaltic underplating provided necessary heat to cause partial melting of the deep crust, including the younger, juvenile, and isotopically depleted crustal components.  相似文献   
117.
晚三叠世花岗岩类在秦岭-大别造山带西端广泛分布,其成因机制及地球动力学背景的研究对于反演华北、扬子两大板块沿秦岭-大别造山带在三叠纪时期的拼合历史具有重要意义.本文选择西秦岭天水地区柴家庄晚三叠世二长花岗岩及其中的暗色包体进行精细的岩石学和地球化学研究.暗色包体中普遍发育针状磷灰石及斜长石捕掳晶,暗示岩浆混合作用;暗色包体具有较低的SiO2(60.27%~60.38%)、高的Mg#(54~55)和Nb/Ta比值(14.8~16.6),表明其来源于富集岩石圈地幔的部分熔融作用;寄主二长花岗岩表现出典型埃达克岩的地球化学特征,其富集Sr、Ba,亏损Y和HREE,岩石的Sr/Y比值介于88~98之间,Y/Yb比值介于13~15之间,暗示源区有石榴石残余.结合前人的研究结果,提出柴家庄二长花岗岩可能为增厚的造山带下地壳在碰撞后伸展环境下发生部分熔融作用的产物,可能与晚三叠世时期秦岭造山带的板片断离作用有关  相似文献   
118.
We conducted geochemical and isotopic studies on the Oligocene–Miocene Niyasar plutonic suite in the central Urumieh–Dokhtar magmatic belt, in order better to understand the magma sources and tectonic implications. The Niyasar plutonic suite comprises early Eocene microdiorite, early Oligocene dioritic sills, and middle Miocene tonalite + quartzdiorite and minor diorite assemblages. All samples show a medium-K calc-alkaline, metaluminous affinity and have similar geochemical features, including strong enrichment of large-ion lithophile elements (LILEs, e.g. Rb, Ba, Sr), enrichment of light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs, e.g. Nb, Ta, Ti, P). The chondrite-normalized rare earth element (REE) patterns of microdiorite and dioritic sills are slightly fractionated [(La/Yb)n = 1.1–4] and display weak Eu anomalies (Eu/Eu* = 0.72–1.1). Isotopic data for these mafic mantle-derived rocks display ISr = 0.70604–0.70813, ?Nd (microdiorite: 50 Ma and dioritic sills: 35 Ma, respectively) = +1.6 and ?0.4, TDM = 1.3 Ga, and lead isotopic ratios are (206Pb/204Pb) = 18.62–18.57, (207Pb/204Pb) = 15.61–15.66, and (208Pb/204Pb) = 38.65–38.69. The middle Miocene granitoids (18 Ma) are also characterized by relatively high REE and minor Eu anomalies (Eu/Eu* = 0.77–0.98) and have uniform initial 87Sr/86Sr (0.7065–0.7082), a range of initial Nd isotopic ratios [?Nd(T)] varying from ?2.3 to ?3.7, and Pb isotopic composition (206Pb/204Pb) = 18.67–18.94, (207Pb/204Pb) = 15.63–15.71, and (208Pb/204Pb) = 38.73–39.01. Geochemical and isotopic evidence for these Eocene–Ologocene mafic rocks suggests that the magmas originated from lithospheric mantle with a large involvement of EMII component during subduction of the Neotethyan ocean slab beneath the Central Iranian plate, and were significantly affected by crustal contamination. Geochemical and isotopic data of the middle Miocene granitoids rule out a purely crustal-derived magma genesis, and suggest a mixed mantle–crustal [MASH (melting, assimilation, storage, and homogenization)] origin in a post-collision extensional setting. Sr–Nd isotope modelling shows that the generation of these magmas involved ~60% to 70% of a lower crustal-derived melt and ~30% to 40% of subcontinental lithospheric mantle. All Niyasar plutons exhibit transitional geochemical features, indicating that involvement of an EMII component in the subcontinental mantle and also continental crust beneath the Urumieh–Dokhtar magmatic belt increased from early Eocene to middle Miocene time.  相似文献   
119.
《International Geology Review》2012,54(10):1246-1275
The Maçka subvolcanic intrusions (MSIs) in the eastern part of the Sakarya zone, northeastern Turkey, play a critical role in understanding the petrogenetic and geodynamic processes that took place during the growth of Late Cretaceous arc crust of this region. U–Pb zircon (79.97 ± 0.97 Ma) and two 40Ar–39Ar amphibole ages (average 81.37 ± 0.5 Ma) indicate that the MSIs were emplaced in Late Cretaceous (Campanian) time into the coeval volcanic rocks. A slightly younger zircon fission track (FT) age (73 ± 9 Ma) points to a rapid exhumation and cooling after crystallization. The intrusions are observed in areas less than 1 km2 in the field and contain abundant mafic microgranular enclaves (MMEs). The host rocks (HRs) are entirely composed of tonalite (SiO2 = 63–65 wt.%, Mg# = 43–52), and the MMEs are gabbro-diorite in composition (SiO2 = 53–57 wt.%, Mg# = 45–48). Both the HRs and the MMEs are I-type, high-K calc-alkaline in composition and display a metaluminous character. They are characterized by geochemical features typical for magmas of subduction-related environments. Chondrite-normalized REE patterns are moderately fractionated [(La/Yb)N = 6–11] and display slightly negative Eu anomalies (Eu/Eu* = 0.7–0.9), with weak concave-upward REE patterns, suggesting that amphibole fractionation played a role during their evolution. The MMEs have slightly different ISr (0.7081–0.7085) and εNd (?5.0 to ?5.4) values compared with those of their HRs (ISr = 0.7084–0.7087 and εNd = ?5.7 to ?6.9), indicating that variable amounts of crustal and mantle components were involved in the generation of parental magma to these rocks. All of these data, combined with those of previous regional studies, suggest that the MSIs are hybrid in origin, produced by the mixing of enriched lithospheric mantle- and lower crust-derived melts in an extensional arc setting that was caused by slab rollback.  相似文献   
120.
《International Geology Review》2012,54(16):2083-2095
Early Eocene adakitic volcanic and granitoid rocks are widespread in the Eastern Pontides of NE Turkey, providing significant constraints for the early Cenozoic tectonomagmatic evolution of the region. These adakitic rock units exhibit relatively high Sr/Y and La/Yb ratios, but low Y and Yb values, similar to modern adakites generated by partial fusion of a subducted oceanic slab. They also have high K2O and low MgO contents, and show moderately enriched ISr and low ?Nd(t) isotopic signatures. Our trace element modelling suggests that these adakitic magmas were generated from partial melting at low pressures of a garnet-bearing amphibolitic source in the continental lower crust. This lower crustal melting resulted from slab break off-induced asthenospheric upwelling and related magmatic underplating beneath the Eastern Pontides. We interpret this melting event and the adakitic magmatic activity as a syn- to post-collisional process involving early Cenozoic collision of the Pontide and Anatolide–Tauride continental blocks. The geochemical and tectonic constraints presented here indicate that early Eocene adakitic magmatism in the Eastern Pontides did not result from partial fusion of a subducted oceanic slab, but instead represent continental-type adakite formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号