首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8511篇
  免费   2628篇
  国内免费   1108篇
测绘学   176篇
大气科学   766篇
地球物理   4550篇
地质学   3349篇
海洋学   1990篇
天文学   371篇
综合类   273篇
自然地理   772篇
  2024年   15篇
  2023年   37篇
  2022年   82篇
  2021年   163篇
  2020年   239篇
  2019年   431篇
  2018年   589篇
  2017年   608篇
  2016年   648篇
  2015年   599篇
  2014年   626篇
  2013年   1044篇
  2012年   670篇
  2011年   682篇
  2010年   557篇
  2009年   473篇
  2008年   542篇
  2007年   519篇
  2006年   487篇
  2005年   503篇
  2004年   412篇
  2003年   383篇
  2002年   338篇
  2001年   292篇
  2000年   294篇
  1999年   154篇
  1998年   128篇
  1997年   115篇
  1996年   96篇
  1995年   98篇
  1994年   93篇
  1993年   83篇
  1992年   61篇
  1991年   41篇
  1990年   23篇
  1989年   20篇
  1988年   16篇
  1987年   15篇
  1986年   11篇
  1985年   14篇
  1984年   11篇
  1983年   3篇
  1982年   16篇
  1981年   10篇
  1979年   2篇
  1977年   2篇
  1976年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
951.
A model describing the three‐dimensional matrix flow along a slope with rock fragments or impermeable blocks was developed. The model was combined with modified Picard's iteration to ensure mass conservation in the unsaturated flow. We found that rock fragments obstruct water flow along the slope. The groundwater table must be raised to provide a sufficient pore water pressure gradient to facilitate water flow, but higher pore water pressure may induce slope failure. We also conducted a bench‐scale laboratory flume experiment to examine the effects of impermeable blocks on downstream seepage flow. In addition, a numerical experiment was conducted to examine how different arrangements of impermeable blocks affect downstream seepage flow and pore water pressure. This research demonstrated that the hydraulic phenomena were affected when impermeable blocks were present, and pore water pressure increased as the position of impermeable blocks was lowered. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
952.
Potential evapotranspiration (PET) is a key input to hydrological models. Its estimation has often been via the Penman–Monteith (P–M) equation, most recently in the form of an estimate of reference evapotranspiration (RET) as recommended by FAO‐56. In this paper the Shuttleworth–Wallace (S–W) model is implemented to estimate PET directly in a form that recognizes vegetation diversity and temporal change without reference to experimental measurements and without calibration. The threshold values of vegetation parameters are drawn from the literature based on the International Geosphere–Biosphere Programme land cover classification. The spatial and temporal variation of the LAI of vegetation is derived from the composite NOAA‐AVHRR normalized difference vegetation index (NDVI) using a method based on the SiB2 model, and the Climate Research Unit database is used to provide the required meteorological data. All these data inputs are publicly and globally available. Consequently, the implementation of the S–W model developed in this study is applicable at the global scale, an essential requirement if it is to be applied in data‐poor or ungauged large basins. A comparison is made between the FAO‐56 method and the S–W model when applied to the Yellow River basin for the whole of the last century. The resulting estimates of RET and PET and their association with vegetation types and leaf area index (LAI) are examined over the whole basin both annual and monthly and at six specific points. The effect of NDVI on the PET estimate is further evaluated by replacing the monthly NDVI product with the 10‐day product. Multiple regression relationships between monthly PET, RET, LAI, and climatic variables are explored for categories of vegetation types. The estimated RET is a good climatic index that adequately reflects the temporal change and spatial distribution of climate over the basin, but the PET estimated using the S–W model not only reflects the changes in climate, but also the vegetation distribution and the development of vegetation in response to climate. Although good statistical relationships can be established between PET, RET and/or climatic variables, applying these relationships likely will result in large errors because of the strong non‐linearity and scatter between the PET and the LAI of vegetation. It is concluded that use of the implementation of the S–W model described in this study results in a physically sound estimate of PET that accounts for changing land surface conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
953.
In situations where the water table fluctuates during the rainy season the characterization of the impact of system variables on the temporal dynamics of the groundwater (GW) is essential to improve the understanding at catchment or regional scale behaviour of GW. In this study the appropriateness of the statistical parameters; mean, median, the 80th percentile (PC80), coefficient of variation (CV), correlation coefficient (r), and multiple regression models were assessed to characterize the impact of system variables on the temporal dynamics of hydraulic head relative to ground surface (HH) during rainy seasons. The study was conducted from 1999 to 2003 in the wet tropical Johnstone River catchment (JRC) in north‐east Queensland, Australia. Piezometer wells were installed at 32 sites under cropping to 5–90 m depth on different soil types, landscape positions, and varying proximity to surface water bodies (i.e. four system variables). The HH was measured, at least at 10–15 day intervals during 1–5 consecutive rainy seasons. The HH in the 32 wells fluctuated throughout each of the five rainy seasons. The mean HH averaged over the seasons ranged from 1·1 to 17·2 m across the wells, the median from 0·9 to 17·3 m, and the PC80 from 0·3 to 16·1 m. The temporal behaviour of HH characterization by mean of means of HH, the mean of medians of HH, and the mean of PC80 of HH, indicated the HH can be classified to belong to three different groups for each one of these parameters. The impact of the system variables on temporal dynamics, explored using multiple regression procedure, indicated that the model for median was marginally better than mean. The CV was found to be most appropriate parameter to characterize the impact of GW system variable (aquifer type), a component of the system variables, on temporal dynamics. The interactions of GW (i) belonging to different GW system and (ii) at shoulder with footslope in a landscape were best characterized by simple linear correlations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
954.
Over the past centuries, the agricultural use of wetlands in Central Europe has required interference with the natural wetland water balance. Often this has consisted of drainage measures alone. In low‐precipitation areas, it has also involved the operation of combined drainage and sub‐irrigation systems. Model studies conducted as part of planning processes, or with a view to finding out the impact of changing climate conditions on the water balance of wetlands, must take these facts into account. For this reason, a water balance model has been devised for wetlands whose water balance is governed by water resources management systems. It is based on the WBalMo model system. Special modules were integrated into WBalMo to calculate the water balance of wetland areas (WABI module) and to regulate inflow partitioning within the wetland (REGINF module). When calculating the water balance, the WABI module takes into account precipitation and potential evapotranspiration, groundwater levels below surface, soil types, land‐use classes, inflows via the running water system, and data for target water levels. It provides actual evapotranspiration, discharge into the running water system, and groundwater levels in the area. The example of the Spreewald, a major wetland area in north‐eastern Germany, was used to design and test the WBalMo Spreewald model. The comparison of measured and calculated water balance parameters of the wetland area confirms the suitability of the model for water balance studies in wetlands with complex water resources management systems. The results reveal the strong influence of water management on the water balance of such areas. The model system has proved to be excellently suited for planning and carrying out water management measures aimed at the sustainable development of wetlands. Furthermore, scenario analyses can be used to assess the impact of global change on the water balance of wetlands. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
955.
Spring snow melt run‐off in high latitude and snow‐dominated drainage basins is generally the most significant annual hydrological event. Melt timing, duration, and flow magnitude are highly variable and influence regional climate, geomorphology, and hydrology. Arctic and sub‐arctic regions have sparse long‐term ground observations and these snow‐dominated hydrologic regimes are sensitive to the rapidly warming climate trends that characterize much of the northern latitudes. Passive microwave brightness temperatures are sensitive to changes in the liquid water content of the snow pack and make it possible to detect incipient melt, diurnal melt‐refreeze cycles, and the approximate end of snow cover on the ground over large regions. Special Sensor Microwave Imager (SSM/I) and Advanced Microwave Scanning Radiometer for EOS (AMSR‐E) passive microwave brightness temperatures (Tb) and diurnal amplitude variations (DAV) are used to investigate the spatial variability of snowmelt onset timing (in two stages, ‘DAV onset’ and ‘melt onset’) and duration for a complex sub‐arctic landscape during 2005. The satellites are sensitive to small percentages of liquid water, and therefore represent ‘incipient melt’, a condition somewhat earlier than a traditional definition of a melting snowpack. Incipient melt dates and duration are compared to topography, land cover, and hydrology to investigate the strength and significance of melt timing in heterogeneous landscapes in the Pelly River, a major tributary to the Yukon River. Microwave‐derived melt onset in this region in 2005 occurred from late February to late April. Upland areas melt 1–2 weeks later than lowland areas and have shorter transition periods. Melt timing and duration appear to be influenced by pixel elevation, aspect, and uniformity as well as other factors such as weather and snow mass distribution. The end of the transition season is uniform across sensors and across the basin in spite of a wide variety of pixel characteristics. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
956.
In a companion Part I of this paper (Int. J. Numer. Anal. Meth. Geomech. 2008; DOI: 10.1002/nag.735 ), a coupled hydro‐mechanical (HM) formulation for geomaterials with discontinuities based on the finite element method (FEM) with double‐node, zero‐thickness interface elements was developed and presented. This Part II paper includes the numerical solution of basic practical problems using both the staggered and the fully coupled approaches. A first group of simulations, based on the classical consolidation problem with an added vertical discontinuity, is used to compare both the approaches in terms of accuracy and convergence. The monolithic or fully coupled scheme is also used in an application example studying the influence of a horizontal joint in the performance of a reservoir subject to fluid extraction. Results include a comparison with other numerical solutions from the literature and a sensitivity analysis of the mechanical parameters of the discontinuity. Some simulations are also run using both a full non‐symmetric and a simplified symmetric Jacobian matrix. On top of verifying the model developed and its capability to reflect the conductivity changes of the interface with aperture changes, the results presented also lead to interesting observations of the numerical performance of the methods implemented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
957.
This paper presents a procedure for the determination of parameters of non‐local damage models. This is to assure a consistent response of a non‐local damage model, as choice of the internal length and other parameters of the model are varied. Correlations between the internal length and other parameters governing the local constitutive behaviour of the model are addressed and exploited. Focus is put on the relationship between the internal length of the non‐local model and the width of the fracture process zone. Numerical examples are used to demonstrate the rigour of the proposed method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
958.
This work develops a top‐down modelling approach for storm‐event rainfall–runoff model calibration at unmeasured sites in Taiwan. Twenty‐six storm events occurring in seven sub‐catchments in the Kao‐Ping River provided the analytical data set. Regional formulas for three important features of a streamflow hydrograph, i.e. time to peak, peak flow, and total runoff volume, were developed via the characteristics of storm event and catchment using multivariate regression analysis. Validation of the regional formulas demonstrates that they reasonably predict the three features of a streamflow hydrograph at ungauged sites. All of the sub‐catchments in the study area were then adopted as ungauged areas, and the three streamflow hydrograph features were calculated by the regional formulas and substituted into the fuzzy multi‐objective function for rainfall–runoff model calibration. Calibration results show that the proposed approach can effectively simulate the streamflow hydrographs at the ungauged sites. The simulated hydrographs more closely resemble observed hydrographs than hydrographs synthesized using the Soil Conservation Service (SCS) dimensionless unit hydrograph method, a conventional method for hydrograph estimation at ungauged sites in Taiwan. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
959.
As a very important component of a coastal system,tidal flats come to be a focus of the studies on land-ocean interaction in the coastal zone because those areas are subjected to intense human activities and are highly sensitive to the global change.The Quanzhou Bay,located along the middle part of Fujian coast of China,covers about 136.4km2,and the area of coastal wetland in the entire bay from intertidal to subtidal with 6m of water depth accounts for 96% of the total area.Seven short cores were collected and divided in situ with the interval of 5cm on the coastal wetlands of Quanzhou Bay on April 19,2006.The sediment samples were scattered and the grain sizes were measured by using Mastersizer 2000.Human beings' activities on tidal flat have disturbed the vertical distribution of sediments in stratigraphic sequence and accelerated the sedimentation rates.Grain size analysis results show that the grain size diameters increase and sediment becomes worse sorted towards the sea under the strong human disturbance;Spartina alterniflora can play a role of trapping the fine sediment;but near the bank,the sediment becomes coarse and there are two peak values on frequency curve influenced by the sandpile.The trough formed by human activities along the coastline changes the transport path of water and suspended sediment.The sediments are transported through the trough and deposit in it during the flood;the ebb flow is retarded by the flow output through the adjacent trough,and the deposited sediment can not be re-suspended;then,the sedimentation rate increases.In situ observation show that the sedimentation rate is about 8-10cm/yr.  相似文献   
960.
The planning and management of water resources in the Shiyang River basin, China require a tool for assessing the impact of groundwater and stream use on water supply reliabilities and improving many environment‐related problems such as soil desertification induced by recent water‐related human activities. A coupled model, integrating rule‐based lumped surface water model and distributed three‐dimensional groundwater flow model, has been established to investigate surface water and groundwater management scenarios that may be designed to restore the deteriorated ecological environment of the downstream portion of the Shiyang River basin. More than 66% of the water level among 24 observation wells have simulation error less than 1·0 m. The overall trend of the temporal changes of simulated and observed surface runoff at the Caiqi gauging station remains almost the same. The calibration was considered satisfactory. Initial frameworks for water allocation, including agricultural water‐saving projects, water diversion within the basin and inter‐basin water transfer, reducing agricultural irrigation area and surface water use instead of groundwater exploitation at the downstream were figured out that would provide a rational use of water resources throughout the whole basin. Sixteen scenarios were modelled to find out the most appropriate management strategies. The results showed that in the two selected management options, the groundwater budget at the Minqin basin was about 1·4 × 108 m3/a and the ecological environment would be improved significantly, but the deficit existed at the Wuwei basin and the number was about 0·8 × 108 m3/a. Water demand for domestic, industry and urban green area would be met in the next 30 years, but the water shortage for meeting the demand of agricultural water use in the Shiyang River basin was about 2·2 × 108 m3/a. It is suggested that more inter‐basin water transfer should be required to obtain sustainable water resource use in the Shiyang River basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号