首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3404篇
  免费   299篇
  国内免费   378篇
测绘学   363篇
大气科学   379篇
地球物理   1174篇
地质学   979篇
海洋学   424篇
天文学   117篇
综合类   103篇
自然地理   542篇
  2024年   16篇
  2023年   22篇
  2022年   44篇
  2021年   72篇
  2020年   102篇
  2019年   87篇
  2018年   86篇
  2017年   105篇
  2016年   121篇
  2015年   111篇
  2014年   141篇
  2013年   286篇
  2012年   123篇
  2011年   128篇
  2010年   96篇
  2009年   165篇
  2008年   206篇
  2007年   231篇
  2006年   182篇
  2005年   199篇
  2004年   152篇
  2003年   150篇
  2002年   139篇
  2001年   121篇
  2000年   126篇
  1999年   117篇
  1998年   99篇
  1997年   105篇
  1996年   78篇
  1995年   57篇
  1994年   50篇
  1993年   56篇
  1992年   45篇
  1991年   30篇
  1990年   37篇
  1989年   34篇
  1988年   39篇
  1987年   29篇
  1986年   17篇
  1985年   19篇
  1984年   12篇
  1983年   11篇
  1982年   9篇
  1981年   9篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1972年   2篇
排序方式: 共有4081条查询结果,搜索用时 15 毫秒
241.
边坡稳定可靠性的随机有限元分析   总被引:9,自引:2,他引:9  
随机有限元法可以处理土性参数的变异性和空间相关性。对二阶摄动随机有限元法的摄动理论和程序进行了研究,提出了偏导矩阵的组集方法,采用正态分布随机变量的正交变换法来提高计算效率。考虑土性参数随机场作用和土性指标之间的互相关性,建立边坡局部抗剪和总体稳定性可靠度的随机有限元分析模型,对某实际土坡进行了可靠度计算,计算结果较为符合实际。  相似文献   
242.
Based on passive seismic interferometry applied to ambient seismic noise recordings between station pairs belonging to a small-scale array, we have obtained shear wave velocity images of the uppermost materials that make up the Dead Sea Basin. We extracted empirical Green’s functions from cross-correlations of long-term recordings of continuous data, and measured inter-station Rayleigh wave group velocities from the daily correlation functions for positive and negative correlation time lags in the 0.1–0.5 Hz bandwidth. A tomographic inversion of the travel times estimated for each frequency is performed, allowing the laterally varying 3-D surface wave velocity structure below the array to be retrieved. Subsequently, the velocity-frequency curves are inverted to obtain S-wave velocity images of the study area as horizontal depth sections and longitude- and latitude-depth sections. The results, which are consistent with other previous ones, provide clear images of the local seismic velocity structure of the basin. Low shear velocities are dominant at shallow depths above 3.5 km, but even so a spit of land with a depth that does not exceed 4 km is identified as a salt diapir separating the low velocities associated with sedimentary infill on both sides of the Lisan Peninsula. The lack of low speeds at the sampling depth of 11.5 km implies that there are no sediments and therefore that the basement is near 10–11 km depth, but gradually decreasing from south to north. The results also highlight the bowl-shaped basin with poorly consolidated sedimentary materials accumulated in the central part of the basin. The structure of the western margin of the basin evidences a certain asymmetry both whether it is compared to the eastern margin and it is observed in north–south direction. Infill materials down to ∼8 km depth are observed in the hollow of the basin, unlike what happens in the north and south where they are spread beyond the western Dead Sea shore.  相似文献   
243.
针对目前常用的储层地质模型不确定性评价方法存在的主要问题,提出了先用距离函数计算模型之间的差异,再以差异的大小来判断不确定性大小的方法.以WZ油田西区为例,采用相控物性参数建模技术,利用顺序高斯模拟方法建立渗透率的三维模型.对各种度量差异的距离函数进行对比研究和分析,结果显示曼哈顿距离函数和欧氏距离函数能较好地刻画模型之间的差异.选用欧氏距离函数计算模型之间的差异,其原理是先计算每两个模型之间相对应的每一网格节点的渗透率值差的平方和,然后取平方根,得到一个表征各模型之间差异的矩阵.根据该矩阵可得到各个模型之间的差异程度,差异越大,不确定性就越大.最后通过对比模型过井剖面图分析结果与距离矩阵分析结果,说明了本方法的正确性,结果显示该方法能有效评价随机模拟生成的储层地质模型的不确定性.  相似文献   
244.
Stress mapping is a numerical modelling technique used to determine the distribution and relative magnitude of stress during deformation in a mineralised terrane. It is based on the general principle that fluid flow in the Earth's crust is primarily related to pressure gradients. It is best applied to epigenetic hydrothermal mineral deposits, where fluid flow and fluid flux are enhanced in dilational sections of structures and in sites of enhanced rock permeability due to high fracture density. These are defined by sites of low minimum principal stress (σ3). Most stress mapping is carried out in two dimensions in plan view using geological maps. This is suitable for terranes with steeply dipping lithostratigraphy and structures in which the distribution of mineral deposits is largely controlled by fault structures portrayed on the maps. However, for terranes with gently dipping sequences and structures, and for situations where deposits are sited in and near the hinges of complex fold structures, stress mapping in cross‐section is preferable. The effectiveness of stress mapping is maximised if mineralisation was late in the evolutionary history of the host terrane, and hence the structural geometry of the terrane and contained deposits were essentially that expressed today. The orientation of syn‐mineralisation far‐field stresses must also be inferred. Two examples of orogenic gold deposits, which meet the above criteria, are used to illustrate the potential of stress mapping in cross‐section. Sunrise Dam, located in the Archaean Yilgarn Craton, is a lode‐gold deposit sited in a thrust‐fold belt. Stress mapping illustrates the heterogeneity of stress distribution in the complex structural geometry of the deposit, and predicts the preferential siting of ore zones around the intersections of more steeply dipping, linking thrusts and banded iron‐formation units, and below the controlling more gently dipping basal thrust, the Sunrise Shear. The Howley Anticline in the Pine Creek block hosts several Palaeoproterozoic gold deposits, sited in complex anticlinal structures in greywacke sequences. Stress mapping indicates that gold ores should develop in the hinge zones of symmetrical anticlines, in the hinge zones and more steeply dipping to overturned limbs of asymmetric anticlines, and in and around thrusts in both anticlines and parasitic synclines. The strong correlation between the predictions of the stress mapping, based on the distribution of low σ3, and the location of gold ores emphasises the potential of stress mapping in cross‐section, not only as an exploration tool for the discovery of additional resources or deposits, but also as a test of geological models. Knowledge of the potential siting of gold ores and their probable orientations also provides a guide to drilling strategies in both mine‐ and regional‐scale exploration.  相似文献   
245.
In the Eastern Lachlan Orogen, the mineralised Molong and Junee‐Narromine Volcanic Belts are two structural belts that once formed part of the Ordovician Macquarie Arc, but are now separated by younger Silurian‐Devonian strata as well as by Ordovician quartz‐rich turbidites. Interpretation of deep seismic reflection and refraction data across and along these belts provides answers to some of the key questions in understanding the evolution of the Eastern Lachlan Orogen—the relationship between coeval Ordovician volcanics and quartz‐rich turbidites, and the relationship between separate belts of Ordovician volcanics and the intervening strata. In particular, the data provide evidence for major thrust juxtaposition of the arc rocks and Ordovician quartz‐rich turbidites, with Wagga Belt rocks thrust eastward over the arc rocks of the Junee‐Narromine Volcanic Belt, and the Adaminaby Group thrust north over arc rocks in the southern part of the Molong Volcanic Belt. The seismic data also provide evidence for regional contraction, especially for crustal‐scale deformation in the western part of the Junee‐Narromine Volcanic Belt. The data further suggest that this belt and the Ordovician quartz‐rich turbidites to the east (Kirribilli Formation) were together thrust over ?Cambrian‐Ordovician rocks of the Jindalee Group and associated rocks along west‐dipping inferred faults that belong to a set that characterises the middle crust of the Eastern Lachlan Orogen. The Macquarie Arc was subsequently rifted apart in the Silurian‐Devonian, with Ordovician volcanics preserved under the younger troughs and shelves (e.g. Hill End Trough). The Molong Volcanic Belt, in particular, was reworked by major down‐to‐the‐east normal faults that were thrust‐reactivated with younger‐on‐older geometries in the late Early ‐ Middle Devonian and again in the Carboniferous.  相似文献   
246.
The granite‐greenstone terranes of the Eastern Goldfields Province, Yilgarn Craton, Western Australia, are a major Australian and world gold and nickel source. The Kalgoorlie region, in particular, hosts several world‐class gold deposits. To attempt to understand why these deposits occur where they do, it is important to understand the crustal architecture in the region and how the major mineral systems operate in this architecture. One way to understand these relationships is to develop a detailed 3–D geological model for the region. The best method to map the 3–D geometry of major geological structures is by acquisition and interpretation of seismic‐reflection profiles. To contribute to this aim, a grid of deep seismic‐reflection traverses was acquired in 1999 to examine the 3–D geometry of the region in an area including the Kalgoorlie mineral region and mineral fields to the north and west. This grid was tied to the 1991 regional deep seismic traverse and 1997 high‐resolution seismic profiles in the same region. The grid covers an area measuring approximately 50 km wide by 50 km long and extended to a depth of approximately 50 km (below the base of the crust in this region). The resulting 3–D geological model was further constrained by both surface geological data and geophysical interpretations, with the seismic interpretations themselves also constrained by gravity and magnetic modelling. The 3–D model was used to investigate the geometric relationships between the major faults and shear zones in the area, the relationship between the granite‐greenstone succession and the basement, and the spatial relationships between the greenstones and the granites. Interpretation of the grid of seismic lines and construction of the 3–D geological model confirmed the existence of the detachment surface and led to the recognition that the granite‐greenstone contact usually occurs at a much shallower level than the detachment. Also, west‐dipping faults in the vicinity of the Golden Mile, including the Abattoir Shear through to Boulder‐Lefroy Fault, appear to be more important than previously thought in controlling the structure of that area. An antiformal thrust stack occurs beneath a triangle zone centred on the Golden Mile. The Black Flag Group was deposited in a probable extensional setting, and late extension was also probably more important than previously thought. The granite‐gneiss domes were uplifted by the formation of antiformal thrust stacks at depth beneath them.  相似文献   
247.
Predictive GIS-Based Model of Rockfall Activity in Mountain Cliffs   总被引:6,自引:1,他引:6  
Rockfall susceptibility has been analysed in mountain cliffs of the Cantabrian Range, North Spain. The main aim of this analysis has been to build a predictive model of rockfall activity from a low number of environmental and geological variables. The rockfall activity has been quantified in a GIS. The cartographic information used shows the spatial distribution of all the recent talus screes as well as their associated source areas in the rock-slopes. The area relation At/Ar (recent talus scree polygon/source basins) in the rock slopes has been used as the rockfall activity indicator. This relation has been validated in 50 pilot rock-slopes and compared with the relation number of recent rock fragments/source basin, obtained from field work. The environmental factors causing rockfall depend on the rock slope situation, and these are: altitude and sun radiation on the rock cliff. The geological factors considered are: lithology, relative position of the main discontinuities with respect to the topographic surface and two morphologic parameters: the roughness and slope gradient. A logistic regression analysis has been applied to a population of 442 limestone and quartzite rock cliffs. The dependent variable is the rockfall activity indicator, which allows the definition of two classes of rock cliff units: low and high activity. The independent variables are altitude, sun radiation (equinox radiation, summer solstice radiation, winter solstice radiation), slope roughness, slope gradient,anisotropy and lithology. Results suggest that it is possible tobuild a valid cartographic predictive model for rockfall activity in mountain rock cliffs from a limited number of easily obtainable variables. The method is especially applicable in massive rock slopes or in regions with uniform rock mass characteristics.  相似文献   
248.
The Permocarboniferous basins in Northeast Germany formed on the heterogeneous and eroded parts of the Variscan orogene and its deformed northern foreland. Transtensional tectonic movements and thermal re-equilibration lead to medium-scale crustal fragmentation, fast subsidence rates and regional emplacement of large amounts of mostly acidic volcanics. The later basin formation and differentiation was triggered by reversals of the large-scale stress field and reactivation of prominent zones of weakness like the Elbe Fault System and the Rhenohercynian/Saxothuringian boundary that separate different Variscan basement domains in the area. The geomechanical behaviour of the latter plays an important role for the geodynamic evolution of the medium to large-scale structural units, which we can observe today in three dimensions on structural maps, geophysical recordings and digital models. This study concentrates on an area that comprises the southern Northeast German Basin, the Saale Basin, the Flechtingen High, the Harz Mountains High and the Subhercynian Basin. The presented data include re-evaluations of special geological and structural maps, the most recent interpretation of the DEKORP BASIN 9601 seismic profile and observations of exposed rock sections in Northeast Germany. On the basis of different structural inventories and different basement properties, we distinguish two structural units to the south and one structural unit to the north of the Elbe Fault System. For each unit, we propose a geomechanical model of basin formation and basin inversion, and show that the Rhenohercynian Fold and Thrust Belt domain is deformed in a thin-skinned manner, while the Mid-German Crystalline Rise Domain, which is the western part of the Saxothuringian Zone, rather shows a thick-skinned deformation pattern. The geomechanical model for the unit north to the Elbe Fault System takes account to the fact that the base of the Zechstein beneath the present Northeast German basin shows hardly any evidence for brittle deformation, which indicates a relative stable basement. Our geomechanical model suggests that the Permocarboniferous deposits may have contributed to the structural stiffness by covering small to medium scale structures of the upper parts of the brittle basement. It is further suggested that the pre-Zechstein successions underneath the present Northeast German basin were possibly strengthening during the Cretaceous basin inversion, which resulted in stress transfer to the long-lived master faults, as indicated for example by the shape of the salt domes in the vicinity of the latter faults. Contrary to this, post-Zechstein successions deformed in a different and rather complex way that was strongly biased by intensive salt tectonic movements.  相似文献   
249.
赵传熙  杨威  朱美林  王永杰 《冰川冻土》2019,41(6):1281-1291
冰川作为地表特殊的下垫面,冰川区内气温明显低于同高度非冰川区大气温度。如何利用低海拔非冰川区观测资料精确估算高海拔冰川区气温,直接关系着青藏高原冰川消融估算及其水文效应的评估。利用架设在藏东南帕隆藏布4号冰川不同高度带的四台自动气象站资料,分析了冰川区与非冰川区气温的波动特征,评估了迄今为止通用的线性递推模型(DT模型)、分段拟合模型(SM模型)和简化热力学模型(GB模型)三种方法在藏东南冰川区气温估算方面的应用效果。对比研究发现:SM模型在帕隆4号冰川上的模拟效果最为理想且操作相对简单;传统DT模型在消融区存在严重的高估,帕隆4号冰川表面夏季(6-8月)正积温的高估比例接近39%;GB模型由于受到诸如冰川风边界层厚度等不确定性的影响,降低了大范围温度估算的可操作性。  相似文献   
250.
Existing facies models for Devonian reef systems can be divided into high‐energy and low‐energy types. A number of assumptions have been made in the development of these models and, in some cases, criteria that distinguish important aspects of the models are poorly defined. The Upper Devonian Alexandra Reef System contains a variety of reef fabrics from different depositional environments and is ideal for studying the range of environments in which stromatoporoids thrived and the facies from these different environments. A wide variety of stromatoporoid growth forms including laminar, tabular, anastamosing laminar and tabular, domal, bulbous, dendroid, expanding conical, concave‐up whorled‐laminar, concave‐up massive tabular and platy‐multicolumnar are present in the Alexandra Reef System. The whorled‐laminar and massive tabular concave‐up growth forms are virtually undocumented from other Devonian reefs but were common in the reef front of the Alexandra, where they thrived in a low‐energy environment around and below fair‐weather wave base. In contrast, high‐energy parts of the reef margin were dominated by bioclastic rubble deposits with narrow ribbon‐like discontinuous bodies of laminar stromatoporoid framestone. In the lagoon, laminar stromatoporoids formed steep‐sided sediment‐dominated bioherms in response to sea‐level rise and flooding. Relying mostly on the different reef facies in the Alexandra system, a new classification scheme for Devonian reef fabrics has been developed. Devonian reef fabrics can be classified as being: (i) sediment‐laden metazoan dominated; (ii) metazoan–microbial dominated (boundstone); (iii) metazoan dominated (framestone); or (iv) metazoan–marine cement dominated. Distinction of these fabrics carries important sedimentary and palaeoecological implications for reconstructing the depositional environment. With examples from the Alexandra Formation, it is demonstrated that reef facies accumulated in a range of depositional environments and that the simple observation of massive stromatoporoids with or without microbial deposits does not automatically imply a high‐energy reef margin, as otherwise portrayed in a number of the existing facies models for these systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号