首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26328篇
  免费   3970篇
  国内免费   5613篇
测绘学   3344篇
大气科学   4039篇
地球物理   6868篇
地质学   11341篇
海洋学   3300篇
天文学   1139篇
综合类   1909篇
自然地理   3971篇
  2024年   93篇
  2023年   291篇
  2022年   733篇
  2021年   924篇
  2020年   1082篇
  2019年   1365篇
  2018年   947篇
  2017年   1253篇
  2016年   1243篇
  2015年   1339篇
  2014年   1682篇
  2013年   1964篇
  2012年   1679篇
  2011年   1761篇
  2010年   1388篇
  2009年   1806篇
  2008年   1770篇
  2007年   1851篇
  2006年   1789篇
  2005年   1429篇
  2004年   1317篇
  2003年   1116篇
  2002年   874篇
  2001年   777篇
  2000年   704篇
  1999年   650篇
  1998年   658篇
  1997年   573篇
  1996年   474篇
  1995年   417篇
  1994年   360篇
  1993年   339篇
  1992年   244篇
  1991年   193篇
  1990年   146篇
  1989年   144篇
  1988年   114篇
  1987年   66篇
  1986年   60篇
  1985年   54篇
  1984年   33篇
  1982年   23篇
  1981年   19篇
  1980年   22篇
  1979年   16篇
  1978年   13篇
  1977年   19篇
  1976年   25篇
  1973年   17篇
  1971年   14篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
921.
922.
An analytical solution is developed in this paper to investigate the dynamic response of a large‐diameter end‐bearing pipe pile subjected to torsional loading in viscoelastic saturated soil. The wave propagation in saturated soil and pile are simulated by Biot's two‐phased linear theory and one‐dimensional elastic theory, respectively. The dynamic equilibrium equations of the outer soil, inner soil, and pile are established. The solutions for the outer and inner soils in frequency domain are obtained by Laplace transform technique and the separation of variables method. Then, the dynamic response of the pile is obtained on the basis of the perfect contacts between the pile and the outer soil as well as the inner soil. The results in this paper are compared with that of a solid pile in elastic saturated soil to verify the validity of the solution. Furthermore, the solution in this paper is compared with the classic plane strain solution to verify the solution further and check the accuracy of the plane strain solution. Numerical results are presented to analyze the vibration characteristics and illustrate the effect of the soil parameters and the geometry size of the pile on the complex impedance and velocity admittance of the pile head. Finally, the displacement of the soil at different depth and frequency is analyzed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
923.
This paper assesses linear regression‐based methods in downscaling daily precipitation from the general circulation model (GCM) scale to a regional climate model (RCM) scale (45‐ and 15‐km grids) and down to a station scale across North America. Traditional downscaling experiments (linking reanalysis/dynamical model predictors to station precipitation) as well as nontraditional experiments such as predicting dynamic model precipitation from larger‐scale dynamic model predictors or downscaling dynamic model precipitation from predictors at the same scale are conducted. The latter experiments were performed to address predictability limit and scale issues. The results showed that the downscaling of daily precipitation occurrence was rarely successful at all scales, although results did constantly improve with the increased resolution of climate models. The explained variances for downscaled precipitation amounts at the station scales were low, and they became progressively better when using predictors from a higher‐resolution climate model, thus showing a clear advantage in using predictors from RCMs driven by reanalysis at its boundaries, instead of directly using reanalysis data. The low percentage of explained variances resulted in considerable underestimation of daily precipitation mean and standard deviation. Although downscaling GCM precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really be considered downscaling, as there is no change in scale, the exercise yields interesting information as to the limit in predictive ability at the station scale. This was especially clear at the GCM scale, where the inability of downscaling GCM precipitation from GCM predictors demonstrates that GCM precipitation‐generating processes are largely at the subgrid scale (especially so for convective events), thus indicating that downscaling precipitation at the station scale from GCM scale is unlikely to be successful. Although results became better at the RCM scale, the results indicate that, overall, regression‐based approaches did not perform well in downscaling precipitation over North America. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
924.
We compared the interannual variability of annual daily maximum and minimum extreme water levels in Lake Ontario and the St Lawrence River (Sorel station) from 1918 to 2010, using several statistical tests. The interannual variability of annual daily maximum extreme water levels in Lake Ontario is characterized by a positive long‐term trend showing two shifts in mean (1929–1930 and 1942–1943) and a single shift in variance (in 1958–1959). In contrast, for the St Lawrence River, this interannual variability is characterized by a negative long‐term trend with a single shift in mean, which occurred in 1955–1956. As for annual daily minimum extreme water levels, their interannual variability shows no significant long‐term change in trend. However, for Lake Ontario, the interannual variability of these water levels shows two shifts in mean, which are synchronous with those for maximum water levels, and a single shift in variance, which occurred in 1965–1966. These changes in trend and stationarity (mean and variance) are thought to be due to factors both climatic (the Great Drought of the 1930s) and human (digging of the Seaway and construction of several dams and locks during the 1950s). Despite this change in means and variance, the four series are clearly described by the generalized extreme value distribution. Finally, annual daily maximum and minimum extreme water levels in the St Lawrence and Lake Ontario are negatively correlated with Atlantic multidecadal oscillation over the period from 1918 to 2010. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
925.
饮食地理文化作为地域文化中最具地方特色的重要元素,在现代人口大规模流动背景下呈现出全新的多样化局面,而基于传统认知的“南甜北咸”的地域分异已然不能代表中国现代食甜分布的空间特征。因此,本文采用网络爬虫技术,获取我国大陆31个省会城市共计约2000万条美食消费数据,从传统类菜品、主食类菜品、饮料类和甜品类菜品4个方面计算城市食甜度,在ArcGIS、MySQL软件支持下,借助GIS空间分析和数理统计方法探究我国现代食甜习惯的空间分布特征,分析影响食甜分布的因素。研究发现:① 中国食甜在空间分布上存在显著的地域分异特征,聚类分析评价参数R 2高达0.88,现代食甜习惯总体呈现“东高北中,西微内低”的包围式格局;② 从整体抑或局部角度,在1%显著性水平上莫兰指数均为正,中国食甜分布呈现显著的空间正相关关系,形成特色鲜明的3个地理集聚区,即以苏浙沪闽为主的东南沿海高甜集聚区,以渝黔川为主的西南内陆低甜集聚区和以陕宁为主的西北内陆低甜集聚区;③ 构建了中国现代食甜习惯分布影响因素模型,其拟合精度为0.82,分析结果显示降水、湿度、气温等气象要素及地理位置是影响现代我国食甜空间分布的重要因素。  相似文献   
926.
The interaction between twin‐parallel tunnels affects the tunnelling‐induced ground deformation, which may endanger the nearby structures. In this paper, an analytical solution is presented for problems in determining displacements and stresses around deforming twin‐parallel tunnels in an elastic half plane, on the basis of complex variable theory. As an example, a uniform radial displacement was assumed as the boundary condition for each of the two tunnels. Special attention was paid to the effects of tunnel depth and spacing between the two tunnels on the surface movement to gain deep insight into the effect of the interaction between twin‐parallel tunnels using the proposed analytical approach. It is revealed that the influence of twin tunnel interaction on surface movements diminishes with both the increase of the tunnel depth and the spacing between the two tunnels. The presented analytical solution manifests that, similar to most of the existing numerical results, the principle of superposition can be applied to determine ground deformation of twin‐parallel tunnels with a certain large depth and spacing; otherwise, the interaction effect between the two tunnels should be taken into account for predicting reliable ground movement. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
927.
Lei Yao  Liding Chen  Wei Wei 《水文研究》2016,30(12):1836-1848
Imperviousness, considered as a critical indicator of the hydrologic impacts of urbanization, has gained increasing attention both in the research field and in practice. However, the effectiveness of imperviousness on rainfall–runoff dynamics has not been fully determined in a fine spatiotemporal scale. In this study, 69 drainage subareas <1 ha of a typical residential catchment in Beijing were selected to evaluate the hydrologic impacts of imperviousness, under a typical storm event with a 3‐year return period. Two metrics, total impervious area (TIA) and effective impervious area (EIA), were identified to represent the impervious characteristics of the selected subareas. Three runoff variables, total runoff depth (TR), peak runoff depth (PR), and lag time (LT), were simulated by using a validated hydrologic model. Regression analyses were developed to explore the quantitative associations between imperviousness and runoff variables. Then, three scenarios were established to test the applicability of the results in considering the different infiltration conditions. Our results showed that runoff variables are significantly related to imperviousness. However, the hydrologic performances of TIA and EIA were scale dependent. Specifically, with finer spatial scale and the condition heavy rainfall, TIA rather than EIA was found to contribute more to TR and PR. EIA tended to have a greater impact on LT and showed a negative relationship. Moreover, the relative significance of TIA and EIA was maintained under the different infiltration conditions. These findings may provide potential implications for landscape and drainage design in urban areas, which help to mitigate the runoff risk. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
928.
This paper endows the recently‐proposed granular element method (GEM) with the ability to perform 3D discrete element calculations. By using non‐uniform rational B‐Splines to accurately represent complex grain geometries, we proposed an alternative approach to clustering‐based and polyhedra‐based discrete element methods whereby the need for complicated and ad hoc approaches to construct 3D grain geometries is entirely bypassed. We demonstrate the ability of GEM in capturing arbitrary‐shaped 3D grains with great ease, flexibility, and without excessive geometric information. Furthermore, the applicability of GEM is enhanced by its tight integration with existing non‐uniform rational B‐Splines modeling tools and ability to provide a seamless transition from binary images of real grain shapes (e.g., from 3D X‐ray CT) to modeling and discrete mechanics computations.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
929.
For slope condition of ground surface, the asymmetrical deformation about the vertical center line and the horizontal center line of the tunnel cross section can be formed. A unified displacement function expressed by the Fourier series is presented to express the asymmetrical deformation of the tunnel cross section. Five basic deformation modes corresponding to the expansion order 2 are a complete deformation mode to reflect deformation behaviors of the tunnel cross section under slope boundary. Such this complete displacement mode is implemented into the complex variable solution for analytically predicting tunneling-induced ground deformation under slope boundary. All of these analytical solutions are verified by good agreements of the comparison between the analytical solutions and finite element method results. A parameter study is carried out to investigate the influence of deformation modes of the tunnel cross section, geometrical conditions of the tunnel and the slope angle, and “Buoyancy effect” on the displacement field. Finally, the proposed method is consistent with measured data of the Hejie tunnel in China qualitatively. The presented solution can provide a simplified indication for evaluating the ground deformation under slope condition of ground surface.  相似文献   
930.
Climate change has fundamentally altered the water cycle in tropical islands, which is a critical driver of freshwater ecosystems. To examine how changes in streamflow regime have impacted habitat quality for native migratory aquatic species, we present a 50‐year (1967–2016) analysis of hydrologic records in 23 unregulated streams across the five largest Hawaiian Islands. For each stream, flow was separated into direct run‐off and baseflow and high‐ and low‐flow statistics (i.e., Q10 and Q90) with ecologically important hydrologic indices (e.g., frequency of flooding and low flow duration) derived. Using Mann–Kendall tests with a running trend analysis, we determined the persistence of streamflow trends through time. We analysed native stream fauna from ~400 sites, sampled from 1992 to 2007, to assess species richness among islands and streams. Declines in streamflow metrics indicated a general drying across the islands. In particular, significant declines in low flow conditions (baseflows), were experienced in 57% of streams, compared with a significant decline in storm flow conditions for 22% of streams. The running trend analysis indicated that many of the significant downward trends were not persistent through time but were only significant if recent decades (1987–2016) were included, with an average decline in baseflow and run‐off of 10.90% and 8.28% per decade, respectively. Streams that supported higher native species diversity were associated with moderate discharge and baseflow index, short duration of low flows, and negligible downward trends in flow. A significant decline in dry season flows (May–October) has led to an increase in the number of no‐flow days in drier areas, indicating that more streams may become intermittent, which has important implications for mauka to makai (mountain to ocean) hydrological connectivity and management of Hawai'i's native migratory freshwater fauna.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号