首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6039篇
  免费   1030篇
  国内免费   1367篇
测绘学   62篇
大气科学   17篇
地球物理   2025篇
地质学   3051篇
海洋学   2195篇
天文学   25篇
综合类   210篇
自然地理   851篇
  2024年   26篇
  2023年   66篇
  2022年   129篇
  2021年   223篇
  2020年   278篇
  2019年   331篇
  2018年   275篇
  2017年   242篇
  2016年   280篇
  2015年   283篇
  2014年   350篇
  2013年   499篇
  2012年   314篇
  2011年   408篇
  2010年   339篇
  2009年   384篇
  2008年   459篇
  2007年   416篇
  2006年   469篇
  2005年   317篇
  2004年   342篇
  2003年   306篇
  2002年   222篇
  2001年   203篇
  2000年   183篇
  1999年   196篇
  1998年   142篇
  1997年   138篇
  1996年   108篇
  1995年   72篇
  1994年   78篇
  1993年   70篇
  1992年   70篇
  1991年   43篇
  1990年   49篇
  1989年   32篇
  1988年   17篇
  1987年   9篇
  1986年   8篇
  1985年   18篇
  1984年   9篇
  1983年   18篇
  1982年   5篇
  1981年   5篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1954年   1篇
排序方式: 共有8436条查询结果,搜索用时 46 毫秒
231.
我国公路泥石流病害严重,泥石流淤埋公路构建筑物是一类常见的公路泥石流病害类型。泥石流衰减动力学是防治泥石流淤埋病害的重要关键技术,也是泥石流运动学、动力学研究的核心问题之一。本文作者运用泥沙运动力学及流体力学原理,初步建立了泥石流固相颗粒和液相浆体的能量衰减条件,把泥石流衰减模式概化为两类,即能量抑制衰减和能量自由衰减;通过泥石流沉积模型试验,得到了不同粘度泥石流体的沉积扇变化形态,随着泥石流体粘度的增大,沉积扇边缘变陡、扩展范围变小、纵轴线长度减小等结论与实际情况吻合;初步建立了泥石流能量衰减速率计算方法。研究成果为防治公路泥石流病害奠定了基础。  相似文献   
232.
李升贵  潘敏 《极地研究》2005,17(3):224-231
本文指出中国的南极研究大多集中在自然科学,而软科学研究相对薄弱,存在着研究领域较少和研究深度不够等不足,这会制约我国在国际南极事务中的话语权、应有权益和国际地位。为了提高中国在国际南极政治和南极事务中的地位,应重视和加强南极软科学研究。文章分析了南极软科学的研究现状和存在的问题,对今后的研究方向和课题进行了展望和讨论,可供极地软科学研究者和管理层参考。  相似文献   
233.
The measurement of hillslope erosion can be a difficult, costly and time‐consuming activity. Many techniques are available, ranging from using environmental tracers, to LiDAR. Erosion measurements using erosion pins are assessed and compared with regional scale erosion data, hillslope data obtained using 137Cs and erosion modelling results. The pins produced erosion rates which are within the range determined using 137Cs and model data but above that of regional denudation rates. Our findings demonstrate that inexpensive erosion pins can provide reliable data on hillslope erosion. © 2015 Commonwealth of Australia. Hydrological Processes © 2015 John Wiley & Sons Ltd.  相似文献   
234.
Stiffened deep mixed (SDM) column is a new ground improvement technique to improve soft soil, which can be used to increase bearing capacity, reduce deformation, and enhance stability of soft soil. This technique has been successfully adopted to support the highway and railway embankments over soft soils in China and other countries. However, there have been limited investigations on its consolidation under embankment loading. This paper developed an analytical solution for the consolidation of embankment over soft soil with SDM column in which core pile is equal to or shorter than outer DM column. The consolidation problem was simplified as a consolidation of composite soil considering the load shear effect of core pile. The developed solution was verified by a comparison with the results computed by three-dimensional (3-D) finite element analysis. A parametric study based on the derived solution was conducted to investigate influence factors—length of core pile, diameter of core pile, diameter of SDM column, modulus of DM column, and permeability coefficient of DM column—on the consolidation behavior of SDM column-supported embankment over soft soil. The developed solution was applied to a case history of SDM column-supported embankment, and a good agreement was found between the predictions and the field measurements.  相似文献   
235.
Abstract

Sediment yields from and sediment transfer within catchments of very low relief and gradient, which make up about 50% of Earth’s surface, are poorly documented and their internal sediment dynamics are poorly known. Sediment sources, their proportionate contributions to valley floors and sediment yield, and storage are estimated using fallout radionuclides 210Pb(ex) and 137Cs in the catchments that drain into Darwin Harbour, northern Australia, an example of this understudied catchment type that appears to be globally at the extreme end of this category of catchments. Unchannelled grassy valley floors (dambos, or seasonal wetlands) trap ~90% of the sediment delivered from hillslopes by sheet and rill erosion. Further down valley, small channels transport ~10% of the sediment that escapes from the dambos, and the remaining sediment comes from erosion of the channels. In this case, the fractional sediment storage is very high as a result of the existence of dambos, a landform that depends for its existence on low gradients.  相似文献   
236.
237.
238.
Agricultural sediment and pesticide runoff is a widespread ecological and human health concern. Numerical simulation models, such as Root Zone Water Quality Model (RZWQM) and Pesticide Root Zone Model (PRZM), have been increasingly used to quantify off‐site agricultural pollutant movement. However, RZWQM has been criticized for its inability to simulate sedimentation processes. The recent incorporation of the sedimentation module of Groundwater Loading Effects of Agricultural Management Systems has enabled RZWQM to simulate sediment and sediment‐associated pesticides. This study compares the sediment and pesticide transport simulation performance of the newly released RZWQM and PRZM using runoff data from 2 alfalfa fields in Davis, California. A composite metric (based on coefficient of determination, Nash–Sutcliffe efficiency, index of agreement, and percent bias) was developed and employed to ensure robust, comprehensive assessment of model performance. Results showed that surface water runoff was predicted reasonably well (absolute percent bias <31%) by RZWQM and PRZM after adjusting important hydrologic parameters. Even after calibration, underestimation bias (?89% ≤ PBIAS  ≤ ?36%) for sediment yield was observed in both models. This might be attributed to PRZM's incorrect distribution of input water and uncertainty in RZWQM's runoff erosivity coefficient. Moreover, the underestimation of sediment might be less if the origin of measured sediment was considered. Chlorpyrifos losses were simulated with reasonable accuracy especially for Field A (absolute PBIAS  ≤ 22%), whereas diuron losses were underestimated to a great extent (?98% ≤ PBIAS  ≤ ?65%) in both models. This could be attributed to the underprediction of herbicide concentration in the top soil due to the limitations of the instantaneous equilibrium sorption model as well as the high runoff potential of herbicide formulated as water‐dispersible granules. RZWQM and PRZM partitioned pesticides into the water and sediment phases similarly. According to model predictions, the majority of pesticide loads were carried via the water phase. On the basis of this study, both RZWQM and PRZM performed well in predicting runoff that carried highly adsorptive pesticides on an event basis, although the more physically based RZWQM is recommended when field‐measured soil hydraulic properties are available.  相似文献   
239.
In high elevation cold regions of the Tibetan Plateau, suspended sediment transfer from glacier meltwater erosion is one of the important hydrological components. The Zhadang glacier is a typical valley‐type glacier in the Nyainqentanglha Mountains on the Tibetan Plateau. To make frequent and long period records of meltwater runoff and sediment processes in the very high elevation and isolated regions, an automatic system was installed near the glacier snout (5400 m a.s.l) in August 2013, to measure the transient discharge and sediment processes at 5‐min interval, which is shorter than the time span for the water flow to traverse the catchment from the farthest end to the watershed outlet. Diurnal variations of discharge, and suspended sediment concentration (SSC) were recorded at high frequency for the Zhadang glacier, before suspended sediment load (SSL) was computed. Hourly SSC varied from the range of 0.2 kg/m3 to 0.5 kg/m3 (at 8:00–9:00) to the range of 2.0 kg/m3 to 4.0 kg/m3 (at 17:00–18:00). The daily SSL was 32.24 t during the intense ablation period. Hourly SSC was linearly correlated with discharge (r = 0.885**, n = 18, p < 0.01). A digit‐eight hysteresis loop was observed for the sediment transport in the glacier area. Air temperature fluctuations influence discharge, and then result in the sediment variations. The results of this study provide insight into the responses of suspended sediment delivery processes with a high frequency data in the high elevation cold regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
240.
Fine sediment is a dynamic component of the fluvial system, contributing to the physical form, chemistry and ecological health of a river. It is important to understand rates and patterns of sediment delivery, transport and deposition. Sediment fingerprinting is a means of directly determining sediment sources via their geochemical properties, but it faces challenges in discriminating sources within larger catchments. In this research, sediment fingerprinting was applied to major river confluences in the Manawatu catchment as a broad‐scale application to characterizing sub‐catchment sediment contributions for a sedimentary catchment dominated by agriculture. Stepwise discriminant function analysis and principal component analysis of bulk geochemical concentrations and geochemical indicators were used to investigate sub‐catchment geochemical signatures. Each confluence displayed a unique array of geochemical variables suited for discrimination. Geochemical variation in upstream sediment samples was likely a result of the varying geological source compositions. The Tiraumea sub‐catchment provided the dominant signature at the major confluence with the Upper Manawatu and Mangatainoka sub‐catchments. Subsequent downstream confluences are dominated by the upstream geochemical signatures from the main stem of Manawatu River. Variability in the downstream geochemical signature is likely due to incomplete mixing caused in part by channel configuration. Results from this exploratory investigation indicate that numerous geochemical elements have the ability to differentiate fine sediment sources using a broad‐scale confluence‐based approach and suggest there is enough geochemical variation throughout a large sedimentary catchment for a full sediment fingerprint model. Combining powerful statistical procedures with other geochemical analyses is critical to understanding the processes or spatial patterns responsible for sediment signature variation within this type of catchment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号