首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7572篇
  免费   2440篇
  国内免费   1315篇
测绘学   209篇
大气科学   55篇
地球物理   4653篇
地质学   4413篇
海洋学   576篇
天文学   350篇
综合类   388篇
自然地理   683篇
  2024年   6篇
  2023年   27篇
  2022年   84篇
  2021年   145篇
  2020年   216篇
  2019年   426篇
  2018年   607篇
  2017年   594篇
  2016年   672篇
  2015年   627篇
  2014年   687篇
  2013年   1057篇
  2012年   654篇
  2011年   651篇
  2010年   564篇
  2009年   459篇
  2008年   524篇
  2007年   435篇
  2006年   426篇
  2005年   435篇
  2004年   361篇
  2003年   327篇
  2002年   255篇
  2001年   245篇
  2000年   249篇
  1999年   117篇
  1998年   68篇
  1997年   74篇
  1996年   50篇
  1995年   58篇
  1994年   47篇
  1993年   39篇
  1992年   40篇
  1991年   34篇
  1990年   17篇
  1989年   8篇
  1988年   11篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   5篇
  1978年   1篇
  1977年   3篇
  1954年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Landward retreat (marine transgression) is a common response of coastal systems to rising relative sea level. However, given sufficient sediment supply, the coast may advance seaward. The latter response of gravel barriers has been recorded in parts of southeastern and northwestern Canada, where seaward‐rising sets of beach ridges are observed in areas of Holocene RSL rise. Cape Charles Yorke, northern Baffin Island, is a 5 km long gravel foreland characterized by seaward‐rising beach‐ridge crest elevations. The prograded morphology of the Cape Charles Yorke foreland is a prime example of coastal response to a combination of rising RSL and abundant sediment supply, an unusual and little‐documented pattern in the Canadian Arctic. The main gravel supply to Cape Charles Yorke is likely from eroding bedrock and raised marine deposits southwest of the foreland. Although not the dominant sediment source, the Cape Charles Yorke delta contributed to the formation of the foreland by sheltering it from easterly storm waves and providing an anchor point for the prograding ridges. The truncation of relict ridges by the modern shoreline suggests a recent regime shift from continuous deposition to predominant erosion. The cause and timing of this shift are unknown but could result from a recent dwindling in sediment supply, increased accommodation space, increased wave energy, and/or an accelerated rise of relative sea level.  相似文献   
992.
大同盆地是汾渭盆地北端一个地面沉降较严重的区域,地下水开采是该区域地面沉降发生的一个重要原因。然而地下水活动与地面沉降在空间和时间的相关性却鲜有研究。为了掌握该地区地下水活动与地面沉降的内在联系,该文基于Envisat ASAR数据,利用短基线集(small baseline subset,SBAS)-In SAR技术对大同盆地地面沉降形变特征进行监测;同时利用地下水位监测数据,研究地面沉降中心与地下水位漏斗在空间和时间上的对应关系,定量分析2处地下水位波动与地表形变的关系。研究表明,地下水开采是大同盆地水源地地面沉降的主要原因,但并非所有的地下水位漏斗都存在地面沉降。该研究成果对指导该地区地下水开采及控制地面沉降有一定参考价值。  相似文献   
993.
安徽省含山县土地整理耕地质量评价及其变化研究   总被引:1,自引:0,他引:1  
土地整理是改善土地利用条件,提高土地质量的有效措施,对土地整理后的耕地质量进行评价是土地整理重要工作之一。从耕地质量的内涵和土地整理项目的基本要求出发,选取耕地自然条件和耕地利用条件2个基本因素和12个影响因子,将特尔斐法与层次分析法相结合,确定各因子权重,构建基于土地整理的耕地质量评价指标体系。以安徽省含山县铜闸镇土地整理项目为例,采用传统的土壤调查与3S技术相结合的方法,分析土地整理复垦过程中耕地质量时空格局变化,得出整理前、后耕地质量的级别变化。研究结果表明,通过土地整理,研究区的耕地质量空间分布和级别发生了很大变化,整理后一级、二级、三级质量的土地比整理前分别增加了7.20%,11.95%和0.65%,四级、五级则分别减少了15.65%和4.16%,整理后的耕地质量总体水平是整理前的1.291倍。  相似文献   
994.
The Franciscan Complex of California records over 150 million years of continuous E-dipping subduction that terminated with conversion to a dextral transform plate boundary. The Franciscan comprises mélange and coherent units forming a stack of thrust nappes, with significant along-strike variability, and downward-decreasing metamorphic grade and accretion ages. The Franciscan records progressive subduction, accretion, metamorphism, and exhumation, spanning the extended period of subduction, rather than events superimposed on pre-existing stratigraphy. High-pressure (HP) metamorphic rocks lack a thermal overprint, indicating continuity of subduction from subduction initiation at ca. 165 Ma to termination at ca. 25 Ma. Accretionary periods may have alternated with episodes of subduction erosion that removed some previously accreted material, but the complex collectively reflects a net addition of material to the upper plate. Mélanges (serpentinite and siliciclastic matrix) with exotic blocks have sedimentary origins as submarine mass transport deposits, whereas mélanges formed by tectonism comprise disrupted ocean plate stratigraphy and lack exotic blocks. The former are interbedded with and grade into coherent siliciclastic units. Palaeomegathrust horizons, separating nappes accreted at different times, appear restricted to narrow zones of <100 m thickness. Exhumation of Franciscan units, both coherent and mélange, was accommodated by significant extension of the hanging wall and cross-sectional extrusion. The amount of total exhumation, as well as exhumation since subduction termination, needs to be considered when comparing Franciscan architecture to modern and ancient subduction complexes. Equal dextral separation of folded Franciscan nappes and late Cenozoic (post-subduction) units across strands of the (post-subduction) San Andreas fault system shows that the folding of nappes took place prior to subduction termination. Dextral separation of similar clastic sedimentary suites in the Franciscan and the coeval Great Valley Group forearc basin is approximately that of the San Andreas fault system, precluding major syn-subduction strike-slip displacement within the Franciscan.  相似文献   
995.
Deep‐water sediments in the Molasse Basin, Austria, were deposited in a narrow foreland basin dominated by a large channel belt located between the steep Alpine fold and thrust belt to the south and the gentler northern slope off the Bohemian Massif. Several gas fields occur outside the channel belt, along the outer bend of a large meander. Accumulation of these overbank sediments reflects a complicated interplay between slope accommodation and debris‐flow and turbidity‐flow interaction within the channel. The tectonically oversteepened northern slope of the basin (ca 2 to 3°) developed a regionally important erosional surface, the Northern Slope Unconformity, which can be traced seismically for >100 km in an east–west direction and >20 km from the channel to the north. The slope preserves numerous gullies sourced from the north that eroded into the channel belt. These gullies were ca 20 km long, <1 km wide and ca 200 m deep. As the channel aggraded, largely inactive and empty gullies served as entry points into the overbank area for turbidity currents within the axial channel. Subsequently, debris‐flow mounds, 7 km wide and >15 km long, plugged and forced the main channel to step abruptly ca 7 km to the south. This resulted in development of an abrupt turn in the channel pathway that propagated to the east and probably played a role in forming a sinuous channel later. As debris‐flow topography was healed, flows spread out onto narrow area between the main channel and northern slope forming a broad fine‐grained apron that serves as the main gas reservoir in this area. This model of the overbank splay formation and the resulting stratigraphic architecture within the confined basin could be applied in modern and ancient systems or for subsurface hydrocarbon reservoirs where three‐dimensional seismic‐reflection data is limited. This study elucidates the geomorphology of the oversteepened slope of the under‐riding plate and its effects on the sedimentation.  相似文献   
996.
Thin‐bedded delta‐front and prodelta facies of the Upper Cretaceous Ferron Notom Delta Complex near Hanksville in southern Utah, USA, show significant along‐strike facies variability. Primary initiation processes that form these thin beds include surge‐type turbidity currents, hyperpycnal flows and storm surges. The relative proportion of sedimentary structures generated by each of these depositional processes/events has been calculated from a series of measured sedimentological sections within a single parasequence (PS6–1) which is exposed continuously along depositional strike. For each measured section, sedimentological data including grain size, lithology, bedding thickness, sedimentary structures and ichnological suites have been documented. Parasequence 6–1 shows a strong along‐strike variation with a wave‐dominated environment in the north, passing abruptly into a fluvial‐dominated area, then to an environment with varying degrees of fluvial and wave influence southward, and back to a wave‐dominated environment further to the south‐east. The lateral facies variations integrated with palaeocurrent data indicate that parasequence 6–1 is deposited as a storm‐dominated symmetrical delta with a large river‐dominated bayhead system linked to an updip fluvial feeder valley. This article indicates that it is practical to quantify the relative importance of depositional processes and determine the along‐strike variation within an ancient delta system using thin‐bedded facies analysis. The wide range of vertical stratification and grading sequences present in these event beds also allows construction of conceptual models of deposition from turbidity currents (i.e. surge‐type turbidity currents and hyperpycnal flows) and storm surges, and shows that there are significant interactions and linkages of these often paired processes.  相似文献   
997.
Determining the relative influence of eustasy versus local sedimentary processes on strata formation is a fundamental challenge in the study of continental margin stratigraphy. In this paper, the relative contribution of these factors on continental margin evolution during the Middle to Late Pleistocene is evaluated using samples from Integrated Ocean Drilling Program Expedition 317. Core‐logging, biostratigraphy and quantitative X‐ray diffraction mineralogy are used to delineate continental shelf sedimentary systems. Major lithological unconformities bound stratigraphic sequences that contain recurring compositional patterns and that resemble other examples of Middle to Upper Pleistocene sequences. However, a preliminary chronology suggests that sequence boundary formation cannot be linked ‘one to one’ with eustatic cycles and therefore these sequences can contain multiple ca 100 ka eustatic cycles. Smaller amplitude, higher frequency transitions in sediment composition are interpreted as stratigraphic sequences driven by more rapid perturbations in the interplay of accommodation and sediment supply; their stratigraphy is variable in time and across the shelf, suggesting a strong influence of local sedimentary forcing in their formation. Changes in sediment composition after the Middle Pleistocene Transition indicate that sediment transfer from onshore sources in the glaciated Southern Alps to the middle‐shelf occurred over a single 100 ka glacio‐eustatic cycle, with an additional 100 ka lag before the mineralogical signal was preserved on the outer‐shelf. This phenomenon is coincident with rapid shelf progradation in this basin, suggesting a causal relation between across‐shelf sediment transport and margin progradation. This is one of very few studies that provide insights at the core scale into the processes driving continental margin evolution during the Middle to Late Pleistocene. This work shows that compositional changes in mud‐dominated successions can lead to a sequence stratigraphic interpretation and the identification of high‐frequency sequences, which may not be possible using a conventional stratigraphic approach.  相似文献   
998.
Understanding the stratigraphic fill and reconstructing the palaeo‐hydrology of incised valleys can help to constrain those factors that controlled their origin, evolution and regional significance. This condition is addressed through the analysis of a large (up to 18 km wide by 80 m deep) and exceptionally well‐imaged Late Pleistocene incised valley from the Sunda Shelf (South China Sea) based on shallow three‐dimensional seismic data from a large (11 500 km2), ‘merge’ survey, supplemented with site survey data (boreholes and seismic). This approach has enabled the characterization of the planform geometry, cross‐sectional area and internal stratigraphic architecture, which together allow reconstruction of the palaeo‐hydrology. The valley‐fill displays five notable stratigraphic features: (i) it is considerably larger than other seismically resolvable channel forms and can be traced for at least 180 km along its length; (ii) it is located in the axial part of the Malay Basin; (iii) the youngest part of the valley‐fill is dominated by a large (600 m wide and 23 m deep), high‐sinuosity channel, with well‐developed lateral accretion surfaces; (iv) the immediately adjacent interfluves contain much smaller, dendritic channel systems, which resemble tributaries that drained into the larger incised valley system; and (v) a ca 16 m thick, shell‐bearing, Holocene clay caps the valley‐fill. The dimension, basin location and palaeo‐hydrology of this incised valley leads to the conclusion that it represents the trunk river, which flowed along the length of the Malay Basin; it connected the Gulf of Thailand in the north with the South China Sea in the south‐east. The length of the river system (>1200 km long) enables examination of the upstream to downstream controls on the evolution of the incised valley, including sea‐level, climate and tectonics. The valley size, orientation and palaeo‐hydrology suggest close interaction between the regional tectonic framework, low‐angle shelf physiography and a humid‐tropical climatic setting.  相似文献   
999.
This study presents a detailed reconstruction of the sedimentary effects of Holocene sea‐level rise on a modern coastal barrier system. Increasing concern over the evolution of coastal barrier systems due to future accelerated rates of sea‐level rise calls for a better understanding of coastal barrier response to sea‐level changes. The complex evolution and sequence stratigraphic framework of the investigated coastal barrier system is reconstructed using facies analysis, high‐resolution optically stimulated luminescence and radiocarbon dating. During the formation of the coastal barrier system starting 8 to 7 ka rapid relative sea‐level rise outpaced sediment accumulation. Not before rates of relative sea‐level rise had decreased to ca 2 mm yr?1 did sediment accumulation outpace sea‐level rise. From ca 5·5 ka, rates of regionally averaged sediment accumulation increased to 4·3 mm yr?1 and the back‐barrier basin was filled in. This increase in sediment accumulation resulted from retreat of the barrier island and probably also due to formation of a tidal inlet close to the study area. Continued transgression and shoreface retreat created a distinct hiatus and wave ravinement surface in the seaward part of the coastal barrier system before the barrier shoreline stabilized between 5·0 ka and 4·5 ka. Back‐barrier shoreline erosion due to sediment starvation in the back‐barrier basin was pronounced from 4·5 to 2·5 ka but, in the last 2·5 kyr, barrier sedimentation has kept up with and outpaced sea‐level. In the last 0·4 kyr the coastal barrier system has been prograding episodically. Sediment accumulation shows considerable variation, with periods of rapid sediment deposition and periods of non‐deposition or erosion resulting in a highly punctuated sediment record. The study demonstrates how core‐based facies interpretations supported by a high‐resolution chronology and a well‐documented sea‐level history allow identification of depositional environments, erosion surfaces and hiatuses within a very homogeneous stratigraphy, and allow a detailed temporal reconstruction of a coastal barrier system in relation to sea‐level rise and sediment supply.  相似文献   
1000.
We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are shear deformation bands that developed under shallow burial conditions via strain hardening in dm-wide zones. The edges of the polygons are 1–5 m long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain <0.005). The individual shear deformation bands show abutting T-junctions, veering, curving, and merging where they mechanically interact. Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号