首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5915篇
  免费   1804篇
  国内免费   458篇
测绘学   114篇
大气科学   12篇
地球物理   4071篇
地质学   2785篇
海洋学   323篇
天文学   334篇
综合类   102篇
自然地理   436篇
  2024年   14篇
  2023年   20篇
  2022年   37篇
  2021年   97篇
  2020年   116篇
  2019年   312篇
  2018年   517篇
  2017年   522篇
  2016年   560篇
  2015年   518篇
  2014年   492篇
  2013年   826篇
  2012年   511篇
  2011年   469篇
  2010年   391篇
  2009年   307篇
  2008年   376篇
  2007年   283篇
  2006年   277篇
  2005年   266篇
  2004年   241篇
  2003年   233篇
  2002年   185篇
  2001年   177篇
  2000年   180篇
  1999年   67篇
  1998年   25篇
  1997年   31篇
  1996年   21篇
  1995年   21篇
  1994年   23篇
  1993年   16篇
  1992年   10篇
  1991年   8篇
  1990年   6篇
  1989年   6篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1979年   3篇
  1978年   1篇
  1954年   2篇
排序方式: 共有8177条查询结果,搜索用时 15 毫秒
51.
湘东─赣西NNE向走滑构造   总被引:6,自引:3,他引:6  
湘东─赣西构造岩浆带位于郯庐断裂南延的关键性部位。中生代以来,该区 NNE向左旋走滑构造主要由会聚走滑和 K─ E离散走滑构造叠加而成。会聚走滑作用造就了 NNE向雁列式剪切断裂系、剪切弯曲和旋转构造、压剪性煤盆地以及断层动热变质─剪切重熔型花岗岩;而离散走滑作用则控制了该区广泛发育的张剪性红盆地、盆岭式构造地貌、以及大规模中低温热液矿床的形成。湘东─赣西复杂的平移构造型式很可能与该区地壳结构分层特征、前期断裂构造格局、平移幅度和多期走滑构造作用四个因素有关。  相似文献   
52.
Field geological investigation and geochemical analysis are carried out on Baya’ertuhushuo Gabbro in South Great Xing’an Range. Field investigation reveals that the gabbro is a magmatic intrusion rather than a component of an ophiolite suite as previously thought. Zircon laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) U-Pb dating indicates the gabbro was formed in 274–275?Ma, just as the widespread volcanic rocks of Dashizhai Formation (P1d), monzogranites and miarolitic alkali-feldspar granites in the study area. The gabbro has SiO2 content between 47.23 wt% and 50.17 wt%, high MgO and FeOT contents of 6.95–11.29 wt% and 7.32–12.24wt%, respectively, and it belongs to low-K tholeiitic series in the SiO2-K2O diagram. The Chondrite-normalized rare earth element (REE) patterns and primitive mantle-normalized spider diagrams of the gabbro are similar to those of Normal Mid-Ocean Ridge Basalt (N-MORB) except for the enrichment of large ion lithophile elements (LILE), such as Rb, Ba and K. In trace element tectonic discriminative diagrams, the samples are mainly plotted in the N-MORB field, and Zircon in?situ Lu-Hf isotopic analysis also indicates the gabbro originated from depleted mantle. Through synthetic studies of the geochemical characteristics and petrogenesis of Baya’ertuhushuo gabbro, volcanic rocks of Dashizhai Formation and granitoids in the area, it is suggested that the early Permian magmatism in the Xilinhot-Xiwuqi area formed in the tectonic setting of asthenosphere upwelling, which was caused by breaking-off of the subducted Paleo-Asian Ocean slab.  相似文献   
53.
刘亢  李岩峰  郭辉文  张迎峰 《地质学报》2021,95(8):2346-2360
1948年川西理塘M 7.3地震是川滇菱形块体内部近一个世纪以来发生的震级最大的走滑型地震。在对此次同震地表破裂进行详细调查基础上,利用差分GPS对同震地表破裂带进行了精确测量与统计分析。结果揭示该地表破裂的现存长度为36 km,北端始于无量河以北,往东南沿藏坝盆地北东缘、德巫盆地东南缘,延伸至德巫乡北,分为南、北两段,而在交德附近存在约3 km长的地表破裂空区。对同震地表破裂的线密度和同震水平位错量进行分段统计后揭示,此次地震的宏观震中应位于德巫盆地中部交德东南约4~5 km处。对理塘同震地表破裂的Riedel剪切分析结果指示,该破裂带主要由R剪切组成,以发育雁列状排列的挤压鼓包(Push-up)为主要特征,伴有少量R′剪切与T裂缝,缺少P型与X型剪切。其中R剪切占95%以上,其在藏坝段(北段)的优势方向为318°,德巫段(南段)为315°,整条地表破裂带的R剪切平均方向为316°。同时发现,此次地震形成的雁列状挤压鼓包主要以平缓的"弧形"为主,这与1981年道孚MS 6.9地震和2010年玉树MS 7.1地震地表破裂带中出现大量反"S"形...  相似文献   
54.
The aim of this paper is to formulate a micromechanics‐based approach to non‐aging viscoelastic behavior of materials with randomly distributed micro‐fractures. Unlike cracks, fractures are discontinuities that are able to transfer stresses and can therefore be regarded from a mechanical viewpoint as interfaces endowed with a specific behavior under normal and shear loading. Making use of the elastic‐viscoelastic correspondence principle together with a Mori‐Tanka homogenization scheme, the effective viscoelastic behavior is assessed from properties of the material constituents and damage parameters related to density and size of fractures. It is notably shown that the homogenized behavior thus formulated can be described in most cases by means of a generalized Maxwell rheological model. For practical implementation in structural analyses, an approximate model for the isotropic homogenized fractured medium is formulated within the class of Burger models. Although the approximation is basically developed for short‐term and long‐term behaviors, numerical applications indicate that the approximate Burger model accurately reproduce the homogenized viscoelastic behavior also in the transient conditions.  相似文献   
55.
This paper reports on a wind tunnel investigation of particle segregation, ripple formation and surface armouring within sand beds of systematically varied particle size distribution, from coarsely skewed to bimodal. By design, the system was closed with no external inputs of mass from an external particle feed. Particles too coarse to travel in saltation for the given range in wind speed were dyed red in order to distinguish them in optical images from finer sand particles, which could be entrained into the unidirectional airflow. A 3D laser scanner measured the changing bed topography at regular time intervals during 18 experiments involving varied combinations of wind speed and bed texture. Image classification techniques were used to investigate the coincident self‐organization of the two populations of particles, as distinguished by their colour. As soon as saltation commenced, some of the red particles segregated into thin discontinuous patches. Particle trapping and sheltering on these rough patches was strongly favoured, causing them to grow preferentially. During the earliest stages of formation, bedform growth coincided with: (i) rapid coarsening of the surface texture; and (ii) the merging of proto‐ripple ‘crests’ to generate larger rhythmic bedforms of lower frequency. Consistent with previous work, ripple size was observed to increase under stronger winds when not exceeding the threshold for entrainment of the coarse‐mode or red particles from the crest. With declining rates of mass transport and particle segregation as the bed surface armoured, and the consequent deceleration of ripple propagation through to the end of each experiment, all surfaces eventually attained a steady‐state morphometry. At saturation, the largest ripples developed on beds having the lowest initial concentration of red particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
56.
The sediment saturation recovery process (i.e. the adaptation of suspended sediment concentration [SSC] to local forcing) is the main feature of the non‐equilibrium suspended sediment transport (SST) frequently occurring in fluvial, estuarine and coastal waters. In order to quantitatively describe this phenomenon, a series solution is analytically derived, including the evolution of both vertical SSC profile and near‐bed sediment flux (NBSF), and is verified by net erosion and net deposition experiments, respectively. The results suggest that the sediment saturation recovery process involves vertically varying fluxes that are not represented correctly by depth‐averaging. Consequently, a vertical two‐dimensional (2D) combined scheme is established and applied respectively in to a dredged trench and to a sand wave feature to demonstrate this argument. By analyzing the variations of the calculated depth‐averaged SSC and NBSF we reveal that the equilibrium state presented by the sediment carrying capacity (SCC) form of the NBSF, which is usually applied in depth‐integrated SST models, lags behind the actual dynamic bed equilibrium state. Moreover, the key factor α, the so‐called saturation recovery coefficient within this form, is not only a function of local Rouse number but also is influenced by the local SSC profile. Finally, a three‐dimensional (3D) non‐orthogonal curvilinear body‐fitted SST model is developed and validated in the Yangtze estuary, China, combined with the in situ hourly hydrographic data from August 14–15, 2007 during spring tide in the wet season. Model results confirm that the vertically varying sediment saturation recovery process, the discrepancies between the actual and SCC form of NBSF and non‐constant value of α are significant in actual real geomorphic cases. The quantitative morphological change resulting from variations in environmental conditions may not be correctly represented by uncorrected depth‐integrated SST models if they do not treat the effects of vertical motion on the sediment saturation recovery process. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
57.
To reduce the numerical errors arising from the improper enforcement of the artificial boundary conditions on the distant surface that encloses the underground part of the subsurface, we present a finite‐element–infinite‐element coupled method to significantly reduce the computation time and memory cost in the 2.5D direct‐current resistivity inversion. We first present the boundary value problem of the secondary potential. Then, a new type of infinite element is analysed and applied to replace the conventionally used mixed boundary condition on the distant boundary. In the internal domain, a standard finite‐element method is used to derive the final system of linear equations. With a novel shape function for infinite elements at the subsurface boundary, the final system matrix is sparse, symmetric, and independent of source electrodes. Through lower upper decomposition, the multi‐pole potentials can be swiftly obtained by simple back‐substitutions. We embed the newly developed forward solution to the inversion procedure. To compute the sensitivity matrix, we adopt the efficient adjoint equation approach to further reduce the computation cost. Finally, several synthetic examples are tested to show the efficiency of inversion.  相似文献   
58.
We present a field‐data rich modelling analysis to reconstruct the climatic forcing, glacier response, and runoff generation from a high‐elevation catchment in central Chile over the period 2000–2015 to provide insights into the differing contributions of debris‐covered and debris‐free glaciers under current and future changing climatic conditions. Model simulations with the physically based glacio‐hydrological model TOPKAPI‐ETH reveal a period of neutral or slightly positive mass balance between 2000 and 2010, followed by a transition to increasingly large annual mass losses, associated with a recent mega drought. Mass losses commence earlier, and are more severe, for a heavily debris‐covered glacier, most likely due to its strong dependence on snow avalanche accumulation, which has declined in recent years. Catchment runoff shows a marked decreasing trend over the study period, but with high interannual variability directly linked to winter snow accumulation, and high contribution from ice melt in dry periods and drought conditions. The study demonstrates the importance of incorporating local‐scale processes such as snow avalanche accumulation and spatially variable debris thickness, in understanding the responses of different glacier types to climate change. We highlight the increased dependency of runoff from high Andean catchments on the diminishing resource of glacier ice during dry years.  相似文献   
59.
In‐channel rock vane structures are widely used in stream restoration as a way to reduce stream channel erosion and create pool or riffle features. When these structures change hydraulic gradients they may affect ecological stream functions, such as hyporheic exchange flow (HEF) patterns. A study of constructed in‐channel structure controls on HEF was conducted in the third‐order Batavia Kill, New York using stream and hyporheic temperature amplitude analysis and computational fluid dynamics (CFD) hydraulic simulations. Temperature monitors were installed in the water column and channel bed at six locations around each of seven in‐channel restoration structures (three cross‐vanes and four J‐hooks) at baseflow in 2007. Elevation surveys of the structures were then used to simulate HEF using CFD. The results indicate a pattern of pronounced upwelling in the run section just below the structure, upwelling transitioning to downwelling within the pool, and pronounced downwelling in the glide out of the pool. This pattern is consistent with natural riffle pool sequences. The direction of HEF inferred from the temperature amplitude analysis agreed with the direction of flow simulated with CFD at 80% of the locations, and the few disagreements were expected due to model limitations. CFD simulation demonstrated that increasing stream flows result in changes in HEF spatial patterns and magnitude at each structure. This work illustrates how CFD simulations can guide design of in‐channel restoration structures for HEF function. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
60.
This study uses an incompressible smoothed‐particle hydrodynamics model to investigate the interaction between dry granular material flows and rigid barriers. The primary aim is to summarise some practical guidelines for the design of debris‐resisting barriers. The granular materials are modelled as a rigid‐perfectly plastic material where the plastic flow corresponds to the critical state. The coupled continuity equation and momentum equation are solved by a semi‐implicit algorithm. Compared with flows in controlled flume experiments, the model adequately reproduces both the kinetic of the flows and the impact force under various conditions. Then the numerical simulations are used to study the detailed interaction process. It is illustrated quantitatively that the interaction force consists of two parts, ie, the earth pressure force caused by the weight of the soil and a dynamic force caused by the internal deformation (flowing mass on top of a dead zone). For the estimation of impact load, this study suggests that an increased earth pressure coefficient depending on the Froude number should be incorporated into the hydrostatic model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号