首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1012篇
  免费   193篇
  国内免费   613篇
测绘学   1篇
地球物理   180篇
地质学   1526篇
海洋学   23篇
综合类   47篇
自然地理   41篇
  2024年   17篇
  2023年   27篇
  2022年   48篇
  2021年   40篇
  2020年   55篇
  2019年   60篇
  2018年   58篇
  2017年   62篇
  2016年   59篇
  2015年   55篇
  2014年   95篇
  2013年   80篇
  2012年   89篇
  2011年   77篇
  2010年   50篇
  2009年   69篇
  2008年   93篇
  2007年   87篇
  2006年   64篇
  2005年   80篇
  2004年   73篇
  2003年   52篇
  2002年   39篇
  2001年   36篇
  2000年   36篇
  1999年   45篇
  1998年   38篇
  1997年   35篇
  1996年   37篇
  1995年   17篇
  1994年   37篇
  1993年   17篇
  1992年   15篇
  1991年   14篇
  1990年   17篇
  1989年   13篇
  1988年   11篇
  1987年   17篇
  1986年   2篇
  1985年   1篇
  1978年   1篇
排序方式: 共有1818条查询结果,搜索用时 234 毫秒
981.
The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones   总被引:55,自引:2,他引:55  
A model for the generation of intermediate and silicic igneousrocks is presented, based on experimental data and numericalmodelling. The model is directed at subduction-related magmatism,but has general applicability to magmas generated in other platetectonic settings, including continental rift zones. In themodel mantle-derived hydrous basalts emplaced as a successionof sills into the lower crust generate a deep crustal hot zone.Numerical modelling of the hot zone shows that melts are generatedfrom two distinct sources; partial crystallization of basaltsills to produce residual H2O-rich melts; and partial meltingof pre-existing crustal rocks. Incubation times between theinjection of the first sill and generation of residual meltsfrom basalt crystallization are controlled by the initial geotherm,the magma input rate and the emplacement depth. After this incubationperiod, the melt fraction and composition of residual meltsare controlled by the temperature of the crust into which thebasalt is intruded. Heat and H2O transfer from the crystallizingbasalt promote partial melting of the surrounding crust, whichcan include meta-sedimentary and meta-igneous basement rocksand earlier basalt intrusions. Mixing of residual and crustalpartial melts leads to diversity in isotope and trace elementchemistry. Hot zone melts are H2O-rich. Consequently, they havelow viscosity and density, and can readily detach from theirsource and ascend rapidly. In the case of adiabatic ascent themagma attains a super-liquidus state, because of the relativeslopes of the adiabat and the liquidus. This leads to resorptionof any entrained crystals or country rock xenoliths. Crystallizationbegins only when the ascending magma intersects its H2O-saturatedliquidus at shallow depths. Decompression and degassing arethe driving forces behind crystallization, which takes placeat shallow depth on timescales of decades or less. Degassingand crystallization at shallow depth lead to large increasesin viscosity and stalling of the magma to form volcano-feedingmagma chambers and shallow plutons. It is proposed that chemicaldiversity in arc magmas is largely acquired in the lower crust,whereas textural diversity is related to shallow-level crystallization. KEY WORDS: magma genesis; deep hot zone; residual melt; partial melt; adiabatic ascent  相似文献   
982.
Any and all proposed theories regarding the origin of sapphires are still very much open to debate. Critical inconsistency arises on the magmatic petrogenesis mechanism of sapphire crystal formation. The Nezametnoye Deposit is one of the most prospective placer deposits of jewelry grade corundum (sapphire) and zircon (jacinth) in Russia, and is known for its native and alluvial gold–wolframite–tin deposits. We present new data obtained from mineral and primary melt inclusions that are syngenetic to corundum. Electron microprobe analysis indicates that rutile, zircon, albite, zinc-bearing hercynite, columbite, and fluorite represent syngenetic mineral inclusions. Silicate melt inclusions are almost always associated with carbon dioxide inclusions; this correlation suggests that a heterogeneous fluid–melt system was present during corundum crystallization. Distinctive features of chemical composition of the inclusions, along with their agpaitic coefficients, indicate that corundum crystallization occurred from granosyenite melts. Primary carbon dioxide-rich inclusions form random groups, or are associated with melt inclusions. P–T conditions for corundum crystallization have been calculated as 780–820 °C and 1.7–3 kbar, based on data from primary carbon dioxide and melt inclusions.  相似文献   
983.
东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义   总被引:32,自引:1,他引:32  
喀雅克登塔格杂岩体位于东昆仑祁漫塔格山东南部,由辉长岩、闪长岩、石英闪长岩、花岗闪长岩、二长花岗岩、正长花岗岩等岩石类型组成,具有典型的岩浆混合特征.通过对杂岩体中辉长岩和二长花岗岩的锆石进行SHRIMP测年,分别获得403.3±7.2 Ma和394±13 Ma两个极为接近的岩浆锆石年龄以及1 116 Ma的继承锆石年龄.锆石形态学特征显示辉长岩和二长花岗岩中锆石的大致结晶温度分别为850~900℃和600~850℃,提供了杂岩体形成的深度信息.测年结果为研究东昆仑造山带的演化历史提供了重要的年代学资料.  相似文献   
984.
青藏高原新生代地壳变形对同碰撞岩浆侵位的制约   总被引:1,自引:0,他引:1  
王二七   《岩石学报》2006,22(3):558-566
同碰撞岩浆作用是青藏高原新生代构造-岩浆活动的一种重要形式,各种类型岩浆岩广泛分布于高原内不同的构造单元中,其中有的来自地幔,不过规模都不大,它们是如何穿过异常厚的地壳侵位到近地表或喷出地表,这还是个未解之谜。根据构造分析,这些岩浆岩均侵位于新生代向斜构造中,例如侵入于高原东南边缘的楚雄复向斜、兰坪.思茅复向斜和老君山向斜的碱性岩,侵入于高原南缘的北喜马拉雅拉轨岗日向斜的片麻状花岗岩以及喷出于高原北部巴颜喀拉和雁石坪复向斜的安山-玄武岩。文中通过一个力学模式,说明这些岩浆岩的侵位受控于地壳应力场特征,即:向斜构造的下部承受的是张应力,地壳发生减薄和张裂,下地壳或上地幔熔融物质以此为通道发生向上的侵位。不过,因向斜顶部地壳承受的是挤压应力,地壳发生挤压缩短,所以只有少量岩浆能侵位到近地表并发生变形。与此相反,背斜构造的下部地壳产生的是挤压应力,阻止了下伏地壳内岩浆的侵入。因此,岩浆的侵位一般不会沿背斜发生。这一力学机制解释了为什么青藏高原规模很小的同碰撞岩浆能穿过异常厚的地壳沿一系列向斜构造侵位到近地表或喷出地表的原因。  相似文献   
985.
湖南香花岭矽卡岩型锡矿床地质特征及控矿因素分析   总被引:3,自引:0,他引:3  
通过对香花岭矽卡岩型锡矿床的地质特征及控矿因素的研究,分析认为,地层、构造、岩浆岩对矿床的形成起了不同的控制作用,成矿受含锡矿源层控制明显,具层控—矽卡岩型锡矿床特征。  相似文献   
986.
新疆尾亚矿区3期岩浆混合作用的初步研究   总被引:1,自引:0,他引:1       下载免费PDF全文
新疆东天山的尾亚钒钛磁铁矿矿区,发育3期岩浆混合作用。第一期为辉长质与花岗质岩浆混合.并生成闪长质岩石;第二期为闪长质与花岗质岩浆的混合,生成了石英二长质岩浆;第三期为石英二长岩浆与闪长质岩浆的混合。在各类岩石氧化物对SiO2的哈克图解上,尾亚3期岩浆混合岩石的投影点分别呈相关的线性关系。在稀土和微量元素方面,3期岩浆混合作用形成的岩石分别表现出相近的地球化学特征。配分曲线形态各自相似.形成的过渡岩石——岩浆混合岩类与各自的端元岩石具有继承关系。3期岩浆混合作用之间具有明显的继承性:第一期形成的岩浆混合岩,成分相当于闪长岩,与第二期岩浆混合的基性端元属同类岩石.且与第二期各类岩石具有相似的地球化学特征;第二期形成的石英二长闪长岩,与第三期的端元岩石石英二长斑岩体完全可以对比。尾亚地区的3期岩浆混合作用表明,混合作用可以是多阶段、多期次的,本区火成岩类最初的母岩浆是酸性的陆壳硅铝质和基性的幔源铁镁质岩浆。岩浆混合作用反映了本区壳幔相互作用的本质。  相似文献   
987.
Fluid inclusions that bear halite daughter minerals were discovered in volcanic rocks at Pingnan area in the Dongying sag. The samples of the fluid inclusions collected from the BGX-15 well drill cores are hosted in quartz of diorite-porphyrite. The daughter minerals are identified as NaCl crystals after being observed under a microscope and analyzed by in situ Raman spectroscopy at −185°C. The results of micro-thermal analysis show that the homogenization temperatures of primary fluid inclusions are between 359 and 496°C, and the salinities of fluid inclusions are from 43.26 to 54.51 wt-%. All fluid inclusions in the studied samples can be divided into five types including primary fluid inclusions and secondary fluid inclusions. The fact that five types of fluid inclusions were symbiotic in the same quartz grain implies that immiscibility happened in magma. Due to the decrease in temperature and pressure during the ascent of magma, the fluids became intensively immiscible. This process accelerates the degassing of CO2 from magma, but the remnant fluids with high salinity are preserved in fluid inclusions. Thus, the primary fluid inclusions are mainly in NaCl-H2O fluids and poor in CO2. The results of our study indicate that the degassing of magma and accumulation of CO2 gas at the Pingnan area are relative to the immiscibility of high salinity fluids. This discovery is important because it can help us have a further understanding of the mechanism of magma degassing and accumulation of the inorganic CO2 in eastern China. Translated from Acta Geologica Sinica, 2006, 80(11): 1699–1705 [译自: 地质学报]  相似文献   
988.
There are 61 major peraluminous granitic bodies in Tibet (TPGs) along the south of the Bangong Co-Gêrzê-Amdo-Nujiang suture, whose lithology includes tourmaline granite, muscovite granite and two-mica granite. The TPGs have SiO2 = 65.7%−79.52%, K2O + Na2O = 2.20%−12.51%, K2O/Na2O = 0.49−1.04 and A/CNK = 1.04−1.38. Al2O3 gradually decreases and the other oxides disperse with the increase in SiO2. The rock series is mainly calc-alk series with high potassium. It has typical characteristics of strongly peraluminous granite. Based on the aluminum saturation index and QAP plots, the peraluminous granite plot is mostly within the continental collision granite (CCG) field, indicating that the peraluminous granites in Tibet formed in a continental collisional setting. Ab-Or-Q-H2O phase diagram indicates the pressure of 0.5 × 108−2 × 108 Pa in TPGs, from which it can be deduced that the forming temperature was under 700°C. The TPGs mainly occurred at the collision stage between two continental crust plates, and the original magma is rooted in the remelting from the upper crust. It is the S-type granite in petrogenesis. The South Gandise belt and the Lhagoi Kangri belt have similar characteristics, suggesting that the two belts have the same magma source and the same tectonic setting. Translated from Acta Geologica Sinica, 2006, 80(9): 1329–1341 [译自: 地质学报]  相似文献   
989.
Many basaltic volcanoes emit a substantial amount of gas over long periods of time while erupting relatively little degassed lava, implying that gas segregation must have occurred in the magmatic system. The geometry and degree of connectivity of the plumbing system of a volcano control the movement of magma in that system and could therefore provide an important control on gas segregation in basaltic magmas. We investigate gas segregation by means of analogue experiments and analytical modelling in a simple geometry consisting of a vertical conduit connected to a horizontal intrusion. In the experiments, degassing is simulated by electrolysis, producing micrometric bubbles in viscous mixtures of water and golden syrup. The presence of exsolved bubbles induces a buoyancy-driven exchange flow between the conduit and the intrusion that leads to gas segregation. Bubbles segregate from the fluid by rising and accumulating as foam at the top of the intrusion, coupled with the accumulation of denser degassed fluid at the base of the intrusion. Steady-state influx of bubbly fluid from the conduit into the intrusion is balanced by outward flux of lighter foam and denser degassed fluid. The length and time scales of this gas segregation are controlled by the rise of bubbles in the horizontal intrusion. Comparison of the gas segregation time scale with that of the cooling and solidification of the intrusion suggests that gas segregation is more efficient in sills (intrusions in a horizontal plane with typical width:length aspect ratio 1:100) than in horizontally-propagating dykes (intrusions in a vertical plane with typical aspect ratio 1:1000), and that this process could be efficient in intermediate as well as basaltic magmas. Our investigation shows that non-vertical elements of the plumbing systems act as strong gas segregators. Gas segregation has also implications for the generation of gas-rich and gas-poor magmas at persistently active basaltic volcanoes. For low magma supply rates, very efficient gas segregation is expected, which induces episodic degassing activity that erupts relatively gas-poor magmas. For higher magma supply rates, gas segregation is expected to be less effective, which leads to stronger explosions that erupt gas-rich as well as gas-poor magmas. These general physical principles can be applied to Stromboli volcano and are shown to be consistent with independent field data. Gas segregation at Stromboli is thought likely to occur in a shallow reservoir of sill-like geometry at 3.5 km depth with exsolved gas bubbles 0.1–1 mm in diameter. Transition between eruptions of gas-poor, high crystallinity magmas and violent explosions that erupt gas-rich, low crystallinity magmas are calculated to occur at a critical magma supply rate of 0.1–1 m3 s− 1.  相似文献   
990.
The 1973 eruption of Eldfell volcano, Iceland, appears to have been a short, simple event, but textural and geochemical evidence suggest that it may have had three different magmatic components. The first-erupted fissure magmas were chemically evolved, rich in plagioclase (∼ 18%) and had shallow, straight crystal size distribution (CSD) curves. The early lavas were less evolved chemically, had lower plagioclase contents (∼ 13%) and steeper, slightly concave up CSDs. The late lavas were chemically similar to the early lavas, but even richer in plagioclase than the initial magmas (∼ 24%) and had the steepest CSDs. There was no chemical evidence for plagioclase fractionation, but compositional diversity could be produced by clinopyroxene fractionation which must have occurred at depth. We propose that the eruption started with old, coarsened (Ostwald ripened) magma left over from a previous eruption, possibly that which produced Surtsey Island ten years earlier. The early flows may be mixtures of small amounts of this old magma with a new, low crystallinity, uncoarsened magma or a completely new magma. The late flows are another new magma from depth, chemically similar to the early flows, but which has grown plagioclase under increasing saturation (undercooling) perhaps during its ascent. All three magmatic components may have originated from the same parent, but had varying degrees of clinopyroxene fractionation, plagioclase nucleation and growth, and coarsening.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号